Abjad Documentation
Release 2.13

Trevor Baca, Josiah Wolf Oberholtzer, Victor Adan

October 23, 2013

I

1

IT

Start here

Abjad?

1.1 Abjadextends LilyPond
1.2 Abjadextends Python
1.3 Whatnext?
1.4 Mailinglists o
Installation

2.1 AbjaddependsonPython
2.2 Abjad depends on LilyPond
2.3 Installing the current packaged version of Abjad with pip . .
2.4 Manually installing Abjad from the Python Package Index . .
2.5 Configuring Abjad,

System Overview

Leaf, Container, Spanner, Mark

3.1 Examplel
32 Example2
Parsing

4.1 LilyPondParsing,
4.2 RhythmTree Parsing
43 “Reduced-Ly” Parsing
Durations

5.1 Breves, longas and other long durations
5.2 LilyPond multipliers
5.3 What’s the difference between duration and written duration?
5.4 What does it mean for a duration to be “assignable”?

IIT Examples

6

Bartok: Mikrokosmos

6.1 Thescore i e
6.2 Themeasures v v v i i i
6.3 Thenotes e
6.4 Thedetails

Ferneyhough: Unsichtbare Farben
7.1 The proportions
7.2 The transforms

CONTENTS

................... 4

11
11
13

15
15
20
21

23
23
24
25
26

27

29
29
29
30
31

10

7.3 Therhythms e e e e e e e e

T4 TheSCOre v i v e e e e e e e e e e e e e e e
7.5 TheLilyPondfile e e e e
Ligeti: Désordre

8.1 Thecell e e e e e e e e e e e e
8.2 Themeasure i i i i i e
8.3 Thestaff e e e e
84 Thescore e e
Mozart: Musikalisches Wiirfelspiel

9.1 Thematerials e e e e e e e e
0.2 ThesStructure e e e e
0.3 TheSCOre o v i i e e e e e
9.4 Thedocument @ i i e e e e e

Part: Cantus in Memory of Benjamin Britten

10.1 Thescoretemplate o v i i e e e e e e e e e e e e e e e e e
102 Thebellmusic e e e
103 The String MUSIC o o vt s e e e e e e e e e e e e e e e
104 Theedits o o 0 i i e e e e e e e e e e e e e e
10.5 Themarks e e
10.6 TheLilyPondfile o e e e e e e e

IV Tutorials

11

First steps with Python, LilyPond and Abjad

11.1 Getting started L . o e e e e e e e e e e e e e
11.1.1 Knowing your operating SyStem ot ii ot e e e e e e
11.1.2 Chosingatexteditor o i i i v it et e e e e e e
11.1.3 Launching the terminal e
11.1.4 Wheretosaveyour work L e

11.2 LilyPond “hello, world!” e
11.2.1 Writingthefile e
11.2.2 Interpreting thefile e
11.2.3 Repeating the process v v v v v i i e e e e e e e e e e e e e

11.3 Python “hello, world!” (at the interpreter) o o v i i v it e
11.3.1 Starting theinterpreter o L e e e e e
11.3.2 Enteringcommands oL e e e e e e e
11.3.3 Stopping the interpreter L e e e e

11.4 Python “hello, world!” (inafile) e
11.4.1 Writingthefile e e e e
11.42 Interpretingthefile L
11.4.3 Repeating the process o o v i v v i i it e e e e e e

11.5 Moreabout Python e
11.5.1 Doing many things o o i i it e e e e e e e e e
11.52 Lookingaround i i e e e e e e e e e e

11.6 Abjad “hello, world” (at the interpreter) o
11.6.1 Starting the interpreter L e
11.6.2 Enteringcommands e
11.6.3 Stopping the interpreter L e e e e

11.7 Abjad “hello, world!” (inafile) e
11.7.1 Writingthefile e e
11.7.2 Interpreting thefile
11.7.3 Repeating the process« o v i v i i i it i e e e e e e e

11.8 More about Abjad e e
11.8.1 Howitworks
11.8.2 InSpecting OULPUL v v v v it e e e e e e e e e e e e e e e

39
40
41
42
42

45
45
51
52
54

57
57
59
59
64
65
68

12 Working with notation

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Working with lists of numbers e e e e
12.1.1 Creating lists o o e e e e e e e e
12.1.2 Inspecting listattributes L e
12.1.3 Adding and removing elementso
12.1.4 Indexing and slicing lists L
12.1.5 Reversing the order of elements e
Changing NoteS tOTESIS .« . v v v v v v e
12.2.1 Making a repeating patternofnotes oL 0oL
12.2.2 Tterating the notesinastaff L
12.2.3 Enumerating thenotesinastaff 0 Lo,
12.2.4 Changing notestorestsbyindex o
12.2.5 Changingnotestorestsbypitch o
Creating rest-delimited slurs e
12.3.1 Entering input e e
12.3.2 Groupingnotesandchords
12.3.3 Skippingone-note slurs Lo
Mapping liststorthythms e
12.4.1 Simpleexample e e e e e e
Overriding LilyPond grobs L
12.5.1 Grobs control typography e e
12.5.2 Abjad grob-override component plug-inso
12.5.3 Nested Grob properties canbe overriden
12.54 Checkthe LilyPonddocs e
Understanding time signature marks oL oL
12.6.1 Getting started L. e e e e e e e
12.6.2 LilyPond’simplicit 4/4 e
12.6.3 Using time signature marks L. oL
12.6.4 First-measure pick-ups e e e e e
Working with component parentageo e
12.7.1 Getting the parentage of acomponent
12.7.2 Parentage attributes L. L e
Working with logical voices e
12.8.1 Whatisalogical voice? o v i e e e e e e e e e
12.8.2 Logical voices vs. eXpliCit VOICES v v v v vt e e e e e e e
12.8.3 Different voice names determine different logical voices
12.8.4 Identical voice names determine a single logical voice
12.8.5 The importance of NnamMing VOICES v v v v v bt

V Reference manual
13 Leaves
13.1 Chords e e
13.1.1 Making chords from a LilyPond input string
13.1.2 Making chords from numbers L
13.1.3 Getting all the written pitches of achordatonce
13.1.4 Getting the written pitches of achordone atatime
13.1.5 Adding one pitchtoachordatatime.
13.1.6 Adding many pitchestoachordatonce
13.1.7 Deleting pitches fromachord o Lo
13.1.8 Formattingchords e
13.1.9 Working withnoteheads e
13.1.10 Working withempty chords
132 NOES . . v v o o e e e e e e e e e e e e
13.2.1 Making notes from a LilyPond input string
13.2.2 Making notes from numbers L.

13.2.3 Getting and setting the written pitch of notes

83
83
83
&3
&3
83
84
84
84
84
85
85
85
86
86
86
87
87
87
88
88
88
89
89
89
&9
90
91
94
96
96
96
97
97
97
97
98
99

101

103
103
103
103
103
103
104
104
104
105
105
105
106
106
106
106

13.2.4 Getting and setting the written durationof notes 107

13.2.5 Overriding NOteS v v v v e e e e e e e e e e e e e e e e 107
13.2.6 Removing note overrides Lo e e e e e 107

133 RESts . . o o o e 108
13.3.1 Making rests from stringso 108
13.3.2 Making rests from durations L. 108

13.3.3 Making rests from other Abjadleaves, 108
13.3.4 Making multi-measure r€StS v it e e e e e e e e e e e e e e e e e 108

13.3.5 Getting and setting the written duration of rests 109

14 Containers 111
[4.1 Containerso i it e e 111
14.1.1 Creating containers o v vt v v it e e e e e e e e e 111
14.1.2 Selecting MUSIC o v i e e e e e e 111

14.1.3 Inspectinglength e 111

14.1.4 TInspecting duration v i i i e e e e e e e e e e e e 111

14.1.5 Adding one component to theend of acontainer 112
14.1.6 Adding many components to the end of acontainer 112
14.1.7 Finding the index of acomponent 112
14.1.8 Inserting acomponentbyindex 112
14.1.9 Removingacomponentbyindex L 112
14.1.10 Removing a component by reference 113
14.1.11 Naming CONtaiNers o v v v v v v ittt e e e e e e e e e 113
14.1.12 Understanding { } and << >>inLilyPond. 113
14.1.13 Understanding sequential and simultneous containers 114
14.1.14 Changing sequential and simultaneous containers 115
14.1.15 Overriding CONtainers v v v v v v e e e e e e e e e e e e e e e 115
14.1.16 Overriding containers’ CONtENtS v v v v v v v v v e e e e et e e e e e 115
14.1.17 Removing container overrides oo 116

142 LilyPondfiles. L e 116
14.2.1 Making LilyPond files 116
14.2.2 Inspecting header, layout and paperblocks 116

14.2.3 Setting global staff size and default papersize 117
14.2.4 Setting title, subtitle and composer information 0oL 117

143 MEASUIES . . . v v v v v e i e 118
14.3.1 Understanding measures in LilyPond 0. 118
14.3.2 Understanding measures in Abjad oo Lo 118

14.3.3 Creating MEASUTES . + « v v v v v v v e e e e e e e e e e e e e e e e e e e 119

144 Scores e 119
14.4.1 Making a score from a LilyPond inputstring 119
14.4.2 Making a score from a list of Abjad components 119
14.4.3 Understanding the interpreter representation of ascore 120
14.4.4 Inspecting the LilyPond formatofascore 120
14.4.5 Selecting the musicin @SCOTe v v v v v v vt e et e e e e 120
14.4.6 Inspectingascore’sleaves L e 120
14.4.7 Getting the lengthof ascore 120
14.4.8 Inspectingduration e e 121
1449 Adding one component to the bottomof ascore 121
14.4.10 Finding the index of a score component v v v v v v ... 121
14.4.11 Removing a score componentbyindex 121
14.4.12 Removing a score component by reference 122
14.4.13 Inspecting whether or not a score contains a component 122
14.4.14 Naming SCOTES .« « v v v v v v v e e et e e e e e e e e e e e e e 122

I45 Staves 122
14.5.1 Making a staff from a LilyPond input string 122
14.5.2 Making a staff from a list of Abjad components 123
14.5.3 Understanding the interpreter representation of astaff 123
14.5.4 Inspecting the LilyPond formatofastaff 123

14.5.5 Selectingthe musicinastaff L o oo 123
14.5.6 Inspectingastaff’sleaves e e e 123
14.5.7 Getting the lengthof astaff 124
14.5.8 Inspecting duration it i e e e e e e e e e 124
14.5.9 Adding one componenttotheendofastaff 124
14.5.10 Adding many components totheendofastaff 124
14.5.11 Finding the index of a componentinastaff 125
14.5.12 Removing a staff componentbyindex 125
14.5.13 Removing a staff component by reference 125
14.5.14 Naming Staves i it e e e e e 125
14.5.15 Changing the contextof avoice i 126
14.5.16 Making parallel voicesinastaff 126
14.6 Tuplets o o e e e e e e e e e e e e 126
14.6.1 Making a tuplet from a LilyPond input string 126
14.6.2 Making a tuplet from a list of other Abjad components 127
14.6.3 Understanding the interpreter representation of atuplet 127
14.6.4 Understanding the string representationof atuplet. 127
14.6.5 Inspecting the LilyPond formatofatuplet 127
14.6.6 Selectingthe musicinatuplet 128
14.6.7 Inspectingatuplet’sleaves L e 128
14.6.8 Getting the lengthof atuplet 128
14.6.9 Inspectingduration e e 128
14.6.10 Understanding rhythmic augmentation and diminution 128
14.6.11 Changing the multiplierof atuplet 128
14.6.12 Adding one componenttotheendof atuplet. 129
14.6.13 Adding many components totheendof atuplet 129
14.6.14 Finding the index of a componentinatuplet 129
14.6.15 Removing a tuplet component by index 129
14.6.16 Removing a tuplet component by reference 130
14.6.17 Overriding attributes of the LilyPond tuplet number grob 130
14.6.18 Overriding attributes of the LilyPond tuplet bracket grob 130
147 VOICES o o o i e e e e 130
14.7.1 Making a voice from a LilyPond inputstring 130
14.7.2 Making a voice from a list of other Abjad components 131
14.7.3 Understanding the interpreter representation of avoice 131
14.7.4 Inspecting the LilyPond formatofavoice 131
14.7.5 Selecting the musicinavoice 131
14.7.6 Inspectingavoice’sleaves e 131
14.7.7 Getting the lengthof avoice i e 132
14.7.8 1Inspecting duration it e e e e e e e e 132
14.7.9 Adding one componenttotheendofavoice 132
14.7.10 Adding many components totheendofavoice 132
14.7.11 Finding the index of a componentinavoice 133
14.7.12 Removing a voice componentbyindex L oL 133
14.7.13 Removing a voice component by reference, 133
14.7.14 Naming VOICES . .« v v v v v v e i e e e e e e e e e e e e e e e e 133
14.7.15 Changing the contextofavoice 134
15 Attachments 135
I5.1 Annotations. L 135
15.1.1 Creating annotations oL e 135
15.1.2 Attaching annotations to a COMpPONent v v v v vt b i 135
15.1.3 Getting the annotations attached toacomponent 135
15.1.4 Detaching annotations from acomponent 136
15.1.5 Inspecting the component to which an annotation is attached 136
15.1.6 Inspecting annotationname e 136
15.1.7 Inspecting annotation value Lo 136
15.1.8 Getting the value of an annotation in a singlecall 136

152 Articulations e e e e e e e e e 136

15.2.1 Creating articulations L e e e e e e 136
15.2.2 Attaching articulationstoaleaf Lo oo L 137
15.2.3 Attaching articulations to many notes and chordsatonce 137
15.2.4 Getting the articulations attached toaleaf 137
15.2.5 Detaching articulations fromaleaf 0oL, 137
15.2.6 Detaching all articulations attached to aleafatonce 138
15.2.7 Inspecting the leaf to which an articulation is attached 138
15.2.8 Understanding the interpreter representation of an articulation that is not attached to a leaf 138
15.2.9 Understanding the interpreter representation of an articulation that is attached to a leaf . 139
15.2.10 Understanding the string representation of an articulation 139
15.2.11 Inspecting the LilyPond format of an articulation 139
15.2.12 Controlling whether an articulation appears above or below the staff 140
15.2.13 Getting and setting the name of an articulation 140
15.2.14 Copying articulations oL 140
15.2.15 Comparing articulationso 141
15.2.16 Overriding attributes of the LilyPond scriptgrob 141

153 Instruments oo oo e e e e 141
15.3.1 Initializin@ inStruments o v v v v vt e e e e e e e e e e e e e e e 141
15.3.2 Attaching instruments to a componento 141
15.3.3 Getting the instrument attached to acomponent 141
15.3.4 Getting the instrument in effect foracomponent L. 142
15.3.5 Detaching instruments from a component 142
15.3.6 Inspecting the component to which an instrument is attached 142
15.3.7 Inspecting the instrument name of an instrument 142
15.3.8 Inspecting the short instrument name of an instrument 142

15.4 LilyPond command marks L e 143
15.4.1 Creating LilyPond command marks, 143
15.4.2 Attaching LilyPond command marks to Abjad components 143
15.4.3 Inspecting the LilyPond command marks attached to an Abjad component 143
15.4.4 Detaching LilyPond command marks from a component 143
15.4.5 Inspecting the component to which a LilyPond command mark is attached 144
15.4.6 Getting and setting the command name of a LilyPond command mark 144
15.4.7 Copying LilyPond commands e 144
15.4.8 Comparing LilyPond command marks 145

15.5 LilyPond comments e 145
15.5.1 Creating LilyPond comments 145
15.5.2 Attaching LilyPond comments toleaves 145
15.5.3 Attaching LilyPond comments to containerso 145
15.5.4 Getting the LilyPond comments attached to acomponent 146
15.5.5 Detaching LilyPond comments fromacomponent 146
15.5.6 Detaching all LilyPond comments attached to a component 146
15.5.7 Inspecting the component to which a LilyPond comment is attached 147
15.5.8 Inspecting the contents string of a LilyPond comment 147

[5.6 Spanners o i e e e e e e e e e e e e e e e e 147
15.6.1 Overriding SPaAnners v v v v v vt e e e e e e e e e e e e e 147
15.6.2 Overriding the components to which spanners attach 148
15.6.3 Removing spanner overrides 148

16 Pitches 149
16.1 Namedpitches e 149
16.1.1 Creatingnamed pitches 149
16.1.2 Inspecting the name of anamed pitch 149
16.1.3 Inspecting the octave of anamedpitch 149
16.1.4 Sorting named pitches L e e e 149
16.1.5 Comparing named pitches oL oo 150
16.1.6 Converting a named pitch to anumbered pitch, 150
16.1.7 Converting a named pitch to a named pitch-class 150

vi

16.1.8 Converting a named pitch to a numbered pitch-class 150

16.1.9 Copyingnamed pitches e e e 151

VI Developer documentation 153
17 Reading and writing code 155
17.1 Codebase i e e e e 155
17.1.1 How the Abjad codebaseislaidout 155
17.1.2 Removing prebuilt versions of Abjad before you checkout 155

17.1.3 Installing the development version 157

172 Codingstandards e 157
17.2.1 General philosophy L 157
17.2.2 Codebase layout. L e 157

1723 Tests . . o v v o e e e e 158
1724 Casingand naming v vttt e e e e e e e e e e e e e 158
17.2.5 Imports o ot o e e e e e e e e e e e e 158
17.2.6 Whitespace and indentation L. oL 159
17277 Linelength e 160
1728 Comments e e e e e e e 160

17.2.9 DOCSIINGS . . v v v v v e 160
17.2.10 Quotation e 161
17.2.11 Functions and methods e 161
17.2.12 Classes and class file layout 162
17.2.13 Operators v v v v e 163
17214 MISC . . oo o e e e e e e e e e e e 163

I7.3 DOCS . o o v e e 163
17.3.1 How the Abjad docs are laidout 163
17.3.2 Installing SphinX e 164
1733 USINgajv apil . . v v v v e e e e e 165
17.3.4 Removing old builds of the documentation 165

17.3.5 Buildingthe HTML docs o 0 i i i e e e e e e e e 165
17.3.6 BuildingaPDFofthedocs 166
17.37 Building a coverage reporto 166
17.3.8 Building other versions of thedocs oo 167
17.3.9 [Inserting images with abjad-book e 167
17.3.10 Updating Sphinx e e e e e e e e e e 167

174 TeStS . . o o i i e e e e e e e e e e e 168
17.4.1 Automated regression? L. oL 168
17.4.2 Runningthebattery 168
17.4.3 Reading test Output v v e e e e e e e e e e e e e e e e e 169
17.4.4 Writing testS o v v v e 169

1745 Testfilesstartwithtest_ o o e 169
17.4.6 Avoidingnameconflicts oL Lo 169
1747 Updating py.test e e e e e 169
17.4.8 Running doctest onthe toolsdirectory 169

18 Developer tools 171
18.1 USINZ @V . . v v vt e e e e e e e 171
18.1.1 Searching the Abjad codebase withajv grep 172
18.1.2 Removingold files withajv clean 172
18.1.3 Updating your development copy of Abjad withajv up 172
18.1.4 Counting classes and functions withajv count 172
18.1.5 Global search-and-replace with ajv replace 173

182 Using ajv book o e e 173
18.2.1 HTML with embedded Abjad 174
18.2.2 LaTeX withembedded Abjad i 175
18.2.3 Using ajv bookonReSTdocuments 176
18.2.4 Using [hide=truel ittt e e e e 176

vii

19 Development notes
19.1 Timing code
19.2 Profiling code
19.3 Memory consumption
19.4 Class attributes
19.5 Using slots

VII Appendices

20 Pitch conventions
20.1 Pitch numbers
20.2 Diatonic pitch numbers . .
20.3 Accidental abbreviations .
20.4 Octave designation
20.5 Default accidental spelling

21 Bibliography

Bibliography

177
177
177
177
178
179

181

183
183
183
184
185
185

187

189

viii

Part I

Start here

CHAPTER
ONE

ABJAD?

Abjad is an interactive software system designed to help composers build up complex pieces of music notation
in an iterative and incremental way. Use Abjad to create a symbolic representation of all the notes, rests, staves,
tuplets, beams and slurs in any score. Because Abjad extends the Python programming language, you can use
Abjad to make systematic changes to your music as you work. And because Abjad wraps the powerful LilyPond
music notation package, you can use Abjad to control the typographic details of the symbols on the page.

1.1 Abjad extends LilyPond

LilyPond is an open-source music notation package invented by Han-Wen Nienhuys and Jan Niewenhuizen and
extended by an international team of developers and musicians. LilyPond differs from other music engraving
programs in a number of ways. LilyPond separates musical content from page layout. LiyPond affords typographic
control over almost everything. And LilyPond implements a powerfully correct model of the musical score.

You can start working with Abjad right away because Abjad creates LilyPond files for you automatically. But
you will work with Abjad faster and more effectively if you understand the structure of the LilyPond files Abjad
creates. For this reason we recommend new users spend a couple of days learning LilyPond first.

Start by reading about text input in LilyPond. Then work the LilyPond tutorial. You can test your understanding
of LilyPond by using the program to engrave of a Bach chorale. Use a grand staff and and include slurs, fermatas
and so on. Once you can engrave a chorale in LilyPond you’ll understand the way Abjad works with LilyPond
behind the scenes.

1.2 Abjad extends Python

Python is an open-source programming language invented by Guido van Rossum and further developed by a team
of programmers working in many countries around the world. Python is used to provision servers, process text,
develop distributed systems and do much more besides. The dynamic language and interpreter features of Python
are similar to Ruby while the syntax of Python resembles C, C++ and Java.

To get the most out of Abjad you need to know (or learn) the basics of programming in Python. Abjad extends
Python because it makes no sense to reinvent the wheel modern programming langauges have developed to find,
sort, store, model and encapsulate information. Abjad simply piggy-backs on the ways of doing these things that
Python provides. So to use Abjad effectively you need to know the way these things are done in Python.

Start with the Python tutorial. The tutorial is structured in 15 chapters and you should work through the first 12.
This will take a day or two and you’ll be able to use all the information you read in the Python tutorial in Abjad.
If you’re an experienced programmer you should skip chapters 1 - 3 but read 4 - 12. When you’re done you can
give yourself the equivlanent of the chorale test suggested above. First open a file and define a couple of classes
and functions in it. Then open a second file and write some code to first import and then do stuff with the classes
and functions you defined in the first file. Once you can easily do this without looking at the Python docs you’ll
be in a much better position to work with Abjad.

http://www.lilypond.org
http://lilypond.org/text-input.html
http://www.lilypond.org/doc/v2.17/Documentation/learning/tutorial
http://www.python.org
http://docs.python.org/tutorial/

Abjad Documentation, Release 2.13

1.3 What next?

The most important parts of Abjad are the interlocking objects that structure the system. Read about the way
Abjad models pitch, duration, leaves, containers, spanners and marks in the Abjad reference manual.

But note that important parts of the system are missing from the manual. The reason for this is that we completed
the Abjad API months before we started the manual. This means that classes and functions you look up in the API
may not yet be documented in the manual. The reference manual will eventually document all parts of the system.
But until then check the API if the manual doesn’t yet have what you need.

Once you understand the basics about how to work with Abjad you should spend some time with the Abjad API.
The API documents all the functionality available in the system. Abjad comprises about 199,000 lines of code.
About half of these implement the automated tests that check the correctness of Abjad. The rest of the code
implements 58 packages comprising 459 classes and 526 functions. All of these are documented in the API.

1.4 Mailing lists

As you begin working with Abjad please be in touch.
Questions, comments and contributions are welcomed from composers everywhere.
Questions or comments? Join the abjad-user list.

Want to contribute? Join the abjad-devel list.

4 Chapter 1. Abjad?

http://groups.google.com/group/abjad-user
http://groups.google.com/group/abjad-devel

CHAPTER
TWO

INSTALLATION

2.1 Abjad depends on Python

You must have Python 2.7.5 installed to run Abjad.
Abjad does not yet support the Python 3.x series of releases.
To check the version of Python installed on your computer type the following:

python —--version

You can download different versions of Python at http://www.python.org.

2.2 Abjad depends on LilyPond

You must have LilyPond 2.17 or greater installed for Abjad to work properly.
You can download LilyPond at http://www.lilypond.org.

After you have installed LilyPond you should type the following to see if LilyPond is callable from your comman-
dline:

lilypond --version

If LilyPond is not callable from your commandline you should add the location of the LilyPond executable to your
PATH environment variable.

If you are new to working with the commandline you should use Google to get a basic introduction to editing your
profile and setting environment variables.

2.3 Installing the current packaged version of Abjad with pip

There are different ways to install Python packages on your computer. One of the most direct ways is with pip,
the package management tool recommended by the Python Package Index.

sudo pip install abjad --upgrade

Python will install Abjad in the site packages directory on your computer and you’ll be ready to start using the
system.

If you don’t have pip, but you do have Python’s easy_install (as is often the case), we strongly recommend
using easy_install to install pip, and then pip to install Abjad.

sudo easy_install pip

http://www.python.org
http://www.lilypond.org
https://pypi.python.org/pypi

Abjad Documentation, Release 2.13

2.4 Manually installing Abjad from the Python Package Index

If you do not have pip or easy_install installed on your computer you then should follow these steps to
install the current packaged version of Abjad from the Python Package Index:

1. Download the current release of Abjad from http://pypi.python.org/pypi/Abjad.
2. Unarchive the downloaded file. Under MacOS and Windows you can double click the archived file.
Under Linux execute the following command with x . y replaced by the current release of Abjad:

tar xzvf Abjad-x.y.tar.gz

3. Change into the directory created in step 2:

cd Abjad-x.y

4. Run the following under MacOS or Linux:

sudo python setup.py install

5. Or run this command under Windows after starting up a command shell with administrator privileges:

setup.py install

These commands will cause Python to install Abjad in your site packages directory. You’ll then be ready to start
using Abjad.

2.5 Configuring Abjad

Abjad creates a ~/ . abjad directory the first time it runs. In ~/ . abjad you will find a the file abjad.cfgq.
This is the Abjad configuration file. You can use the Abjad configuration file to tell Abjad about your preferred
PDF file viewer, MIDI player, your preferred LilyPond language and so on.

By default, your configuration file’s contents will look approximately like this:

Abjad configuration file created by Abjad on 19 October 2013 12:30:17.
File is interpreted by ConfigObj and should follow ini syntax.

Set to the directory where all Abjad-generated files
(such as PDFs and LilyPond files) should be saved.

Defaults to $HOME.abjad/output/

abjad output = /Users/josiah/.abjad/output

Default accidental spelling (mixed|sharps/flats).
accidental_spelling = mixed

Comma-separated list of LilyPond files that
Abjad will "\include" in all generated *.ly files
lilypond_includes = ,

Language to use in all generated LilyPond files.
lilypond_language = english

Lilypond executable path. Set to override dynamic lookup.
lilypond_path = lilypond

MIDI player to open MIDI files.
When unset your OS should know how to open MIDI files.
midi_player =

PDF viewer to open PDF files.
When unset your OS should know how to open PDFs.

pd 7 iewer =

Text editor to edit text files.

6 Chapter 2. Installation

http://pypi.python.org/pypi/Abjad

Abjad Documentation, Release 2.13

should know how to open text files.

In Linux, for example, you might want to set your pdf_viewer to evince and your midi_player to
tiMIDIty.

The configuration file is in ini syntax, so make sure to follow those conventions when editing.

2.5. Configuring Abjad

Abjad Documentation, Release 2.13

8 Chapter 2. Installation

Part 11

System Overview

CHAPTER
THREE

LEAF, CONTAINER, SPANNER, MARK

At the heart of Abjad’s Symbolic Score-Control lies a powerful model that we call the Leaf Container Spanner
Mark, or LCSM, model of the musical score.

The LCSM model can be schematically visualized as a superposition of two complementary and completely
independent layers of structure: a tree that includes the Containers and the Leaves, and a layer of free floating

connectors or Spanners.
{ container 1 t|
spanner |

[container 2] { confainer 3 |

spanner 2

confainer &

container 4

spanngt 4

leaf 1 leaf 4

[leaf 2 leaf 3 I

There can be any number of Spanners, they may overlap, and they may connect to different levels of the tree
hierarchy. The spanner attach to the elements of the tree, so a tree structure must exist for spanners to be made
manifest.

3.1 Example 1

To understand the whys and hows of the LCSM model implemented in Abjad, it is probably easier to base the
discussion on concrete musical examples. Let’s begin with a simple and rather abstract musical fragment: a
measure with nested tuplets.

11

Abjad Documentation, Release 2.13

F=_— r—bH—

QJJJJJ.I_J_J_JJ:DJ |

What we see in this little fragment is a measure with 4/4 meter, 14 notes and four tuplet brackets prolating the
notes. The three bottom tuplets (with ratios 5:4, 3:2, 5:4) prolate all but the last note. The topmost tuplet prolates
all the notes in the measure and combines with the bottom three tuplets to doubly prolate all but the last note.
The topmost tuplet as thus prolates three tuplets, each of which in turn prolates a group of notes. We can think
of a tuplet as containing notes or other tuplets or both. Thus, in our example, the topmost tuplet contains three
tuplets and a half note. Each of the tuplets contained by the topmost tuplet in turn contains five, three, and five
notes respectively. If we add the measure, then we have a measure that contains a tuplet that contains tuplets that
contain notes. The structure of the measure with nested tuplets as we have just described it has two important
properties:

1. It is a hierarchical structure.

2. It follows exclusive membership, meaning that each element in the hierarchy (a note, a tuplet or a mea-
sure) has one and only one parent. In other words a single note is not contained in more than one tuplet
simultaneously, and no one tuplet is contained in more than one other tuplet at the same time.

What we are describing here is a tree, and it is the structure of Abjad containers.

While this tree structure seem like the right way to represent the relationships between the elements of a score, it
is not enough. Consider the tuplet example again with the following beaming alternatives:

Beaming alternative 1:

L] '? 1
: §— —— —

eJJJJJJ_J_J_.D:DJ |

Beaming alternative 2:

L] '? 1
I § o p— —

QJJJJJJ_J_J_.D:DJ |

Beaming alternative 3:

f 3 1
r 3= —5—

T T A |

Clearly the beaming of notes can be totally independent from the tuplet groupings. Beaming across tuplet groups
implies beaming across nodes in the tree structure, which means that the beams do not adhere to the exclusive
(parenthood) membership characteristic of the tree. Beams must then be modeled independently as a separate and
complementary structure. These are the Abjad spanners.

Below we have the score of our tuplet example with alternative beaming and its the Leaf-Container-Spanner graph.
Notice that the colored blocks represent spanners.

Beaming alternative 3 (graph):

12 Chapter 3. Leaf, Container, Spanner, Mark

Abjad Documentation, Release 2.13

Measure

RN
—

Tuplet [3:2]

[

Tuplet [5:4] Tuplet [3:2]
1
3
4:5
1 1 1 1 1 1 1 1
15 15 15 15 15 18 18 18
Beam Spanner 1 Beam Spanner 2 Beam Spanner 3

3.2 Example 2

As a second example let’s look at the last five measures of Barték’s Wandering from Mikrokosmos vol. III. As
simple as it may seem, these five measures carry with them a lot of information pertaining to musical notation.

fi ritard._ _ _ _ _ _ _ _ _ _ _
S W i W 5 —" i P E—— p— 2 2 I
e, A e d A, L

rp mp —_—

1
g
%

|

Note: Please refer to the Bartok example for a step by step construction of the musical fragment and its full Abjad
code.

There are many musical signs of different types on the pages: notes, dynamic markings, clefs, staves, slurs, etc.
These signs are structurally related to each other in different ways. Let’s start by looking at the larger picture. The
piano piece is written in two staves. As is customary, the staves are graphically grouped with a large curly brace
attaching to them at the beginning or each system. Notice that each staff has a variety of signs associated with it.
There are notes printed on the staff lines as well as meter indications and bar lines. Each note, for example, is in
one and only one staff. A note is never in two staves at the same time. This is also true for measures. A measure
in the top staff is not simultaneously drawn on the top staff and the bottom staff. It is better to think of each staff
as having its own set of measures. Notice also that the notes in each staff fall within the region of one and only
one measure, i.e. measures seem to contain notes. There is not one note that is at once in two measures (this is
standard practice in musical notation, but it need not always be the case.)

As we continue describing the relationships between the musical signs in the page, we begin to discover a certain
structure, or a convenient way of structuring the score for conceptualization and manipulation. All the music in a
piano score seems to be written in what we might call a staff group. The staff group is composed of two staves.
Each staff in turn appears to be composed of a series or measures, and each measure is composed of a series of
notes. So again we find that the score structure can be organized hierarchically as a tree. This tree structure looks
like this:

3.2. Example 2 13

Abjad Documentation, Release 2.13

Beaim spanier

lMeasurel},mJ Measiire (2/4) l Measme[}.f-i]] l Measme[}.f-i]]

[Measure {2/4)]

Text sparimer

JR—

MWWN:IEMJJ [Maasure I3."-1-Il] [Measuwiz-fd]] [fdeasura IZ-'-‘?] [Measura [2|'4I]

Beam spannar Beam spanmner

Notice again though that there are elements in the score that imply and require a different kind of grouping. The
two four eighth-note runs in the lower staff are beamed together across the bar line and, based on our tree structure,
across tree nodes. So do the slurs, the dynamics markings and the ritardando indication at the top of the score.
As we have seen in the tuplets example, all these groups running across the tree structure can be defined with
spanners.

14 Chapter 3. Leaf, Container, Spanner, Mark

CHAPTER
FOUR

PARSING

Abjad provides a small number of domain-specific language parsers. The most important of these is its LilyPond
parser.

4.1 LilyPond Parsing

Abjad’s LilyPond parser parses a large (although incomplete) subset of LilyPond’s syntax:

>>> parser = lilypondparsertools.LilyPondParser ()

>>> string = """

\new Score <<
\new StaffGroup <<

\new Staff {
r2 ~ \markup { \center-column { tutti \line { (con sord.) } } }
r8
es’” [(\ppp
£57 77
es’’’
fs’’’ \flageolet
es’’’
5/
es’’
fs’" 1)
r
r4

}

\new Staff {
r4d ~ \markup { (con sord.) }
r8
es’” [(\ppp
fs’’
es’"’ 1)
r
es’” [(
fs’’
es’
fs’” 1)
r
fs’'" [(
es’
fs’ 1)
r

}

\new Staff {
r8 ~ \markup { tutti }
ds’ [(\ppp
es’’
ds’’]
es’ |
ds’
es’’
ds’’" 1)

15

Abjad Documentation, Release 2.13

es’’8

es’’ [
ds’]

>>

>>
nun

>>> parsed = parser (string)

>>> f (parsed)
\new Score <<
\new StaffGroup <<
\new Staff {

}

r2
A \markup {
\center-column
{
tutti
\line

{

con

sord.

}
r8
es’’8 \ppp [(
fsfllg
es’’’8
fs’’78 -\flageolet
es’’’8
fSIII8
es’’8
fs’’8 1)
r8
rd

\new Staff {

}

rd
A \markup {
(
con
sord.
)
}
r8
es’8 \ppp [(
fs’’8
es’’8])
r8
es’8 [(
fs’’8
es’8
fs’8])
r8
fs’’8 [(
es’8
fs’8 1)
r8

\new Staff {

r8 ~ \markup { tutti }
ds’8 \ppp [(

es’’8

ds’’8

16

Chapter 4. Parsing

Abjad Documentation, Release 2.13

es’8 [
ds’ 8
es’’8
ds’”’8 1)
rd

es’’8 [(
ds’ 8

es’8 1)
r8

es’’'8 [(
ds’8 1)

>>
>>

>>> show (parsed)

tutti
A { con sord.)
e
o
& { con sord.)
A % & =
{5?}_ L I
0 "L
tutti PPP
fi Tl
o C— fege

N Hmh_;_J%:r-f“##;
rpp

The LilyPond parser understands most spanners, articulations and dynamics:

>>> string = '’/
\new Staff {
c’8 \f \> (
da" —_ [
e’ ">
£’ \ppp \<
g’ \startTrillSpan \ (
a’ \)
b’] \stopTrillSpan
c’’) \accent \sfz
}
>>> result = parser(string)

>>> f (result)

\new Staff {

NE > (

—\portato [
~\accent

\ppp \<

\(\startTrillSpan
\)

] \stopTrillSpan
8 —\accent \sfz)

S~ 0~
[e0}

~

~

QO 0 Q Hh O Q9 Q
~
~ 0O O 0 0o 00 0

~

>>> show (result)

4.1. LilyPond Parsing

17

Abjad Documentation, Release 2.13

f=ppp — o

The LilyPond parser understands contexts and markup:

>>> string = r’’’\new Score <<
\new Staff = "Treble Staff" /{
\new Voice = "Treble Voice" {
¢’ ™\markup { \bold Treble! }

}
}
\new Staff = "Bass Staff" {
\new Voice = "Bass Voice" ({
\clef bass
c, _\markup { \italic Bass! }

>>

rror

>>> result = parser (string)

>>> f (result)
\new Score <<
\context Staff = "Treble Staff" {
\context Voice = "Treble Voice" {
c’4
A \markup {
\bold
Treble!

}
}
\context Staff = "Bass Staff" {
\context Voice = "Bass Voice" {
\clef "bass"
c,4
_ \markup {
\italic
Bass!

>>

>>> show (result)

A Treble!
%:
(Y, -

Bass!

The LilyPond parser also understands certain aspects of LilyPond file layouts, such as header blocks:

>>> string = r’’’

\header {
name = "Foo von Bar"
composer = \markup { by \bold \name }
title = \markup { The ballad of \name }
tagline = \markup { "" }

}

\score {
\new Staff {

18 Chapter 4. Parsing

Abjad Documentation, Release 2.13

\time 3/4
g’ (b’ 4)
e’’4. (c’'’8 c’'d)

}

rror

>>> result = parser (string)

>>> f (result)
Abjad revision 12387
% 2013-10-17 19:39

o

\version "2.17.28"
\language "english"

\header ({
composer = \markup {
by
\bold
"Foo von Bar"
}
name = #"Foo von Bar"
tagline = \markup { }
title = \markup {
The
ballad
of
"Foo von Bar"
}
}

\score {

\new Staff {
\time 3/4
g4 (
b’ 4
da’’4)

e’ 4. (
c’’8
c’4)

>>> show (result)

The ballad of Foo von Bar

by Foo von Bar

4] . —
1" L) | Il F =,
ﬁ [] 1 - ; *

il | | | |1 |
LTS —_— 1 | | L I
[| ' -

The LilyPond parser supports a small number of LilyPond music functions, such as \relative and
\transpose.

Music functions which mutate the score during compilation result in a normalized Abjad score structure. The
resulting structure corresponds to the music as it appears on the page, rather than as it was input to the parser:

>>> string = r’’’
\new Staff \relative c {
c32 de fgabcdefgabcdefgabc
}

rror

>>> result = parser (string)

>>> f (result)
\new Staff {
c32
d32
e32
£32

4.1. LilyPond Parsing 19

Abjad Documentation, Release 2.13

g32
a32
b32
c’32
d’ 32
e’ 32
£732
g’ 32
a’32
b’ 32
c’’32
d’’32
e’ 32
£rr32
g’’32
a’’32
b’’ 32
clll32

>>> show (result)

-
f prY,
- T e HTar
\d; :Z:::Z:Z;Z;I‘I 'dl'
;:;:‘r*"‘|L

4.2 RhythmTree Parsing

Abjad’s rhythm-tree parser parses a microlanguage resembling Ircam’s RTM Lisp syntax, and generates a se-
quence of RhythmTree structures, which can be furthered manipulated by composers, before being converted into

an Abjad score object:

>>> parser = rhythmtreetools.RhythmTreeParser ()

>>> string = (3 (1 (1 ((2 (L 1 1)) 2 2 1))))"’
>>> result = parser (string)
>>> result[0]
RhythmTreeContainer (
children=(

RhythmTreeLeaf (
preprolated_duration=Duration(l, 1),
is_pitched=True
)

RhythmTreeContainer (
children=(
RhythmTreeContainer (
children=(

RhythmTreeLeaf (
preprolated_duration=Duration (1,
is_pitched=True
)I

RhythmTreeLeaf (
preprolated_duration=Duration(1l,
is_pitched=True
)I

RhythmTreeLeaf (

preprolated_duration=Duration (1,
is_pitched=True
)
)!
preprolated_duration=Duration (2, 1)
)!
RhythmTreeLeaf (
preprolated_duration=Duration (2, 1),
is_pitched=True

1)[

1),

1),

20

Chapter 4. Parsing

Abjad Documentation, Release 2.13

)!

RhythmTreeLeaf (
preprolated_duration=Duration (2, 1),
is_pitched=True
) s

RhythmTreeLeaf (
preprolated_duration=Duration(l, 1),
is_pitched=True
)

)I

preprolated_duration=Duration(1l, 1)
)
)l
preprolated_duration=Duration (3, 1)

)

>>> tuplet = result[0] ((1, 4)) [0]
>>> f (tuplet)
\tweak #’text #tuplet-number::calc-fraction-text

\times 3/4 {
c’'?2
\times 4/7 {
\times 2/3 {
c’8
c’8
c’8
}
c’4
c’4
c’8

>>> staff = stafftools.RhythmicStaff ([tuplet])

>>> show (staff)

I 4:3 1

4.3 “Reduced-Ly” Parsing

Abjad’s “reduced-ly” parser parses the “reduced-ly” microlanguage, whose syntax combines a very small subset of
LilyPond syntax, along with affordances for generating various types of Abjad containers. It also allows for rapidly
notating notes and rests without needing to specify pitches. It is used mainly for creating Abjad documentation:

>>> parser = lilypondparsertools.ReducedLyParser ()
>>> string = "| 4/4 ¢’ 4’ e’ £’ || 3/8 r8 g'4 |"
>>> result = parser (string)

>>> f (result)
{
{
\time 4/4
c’4
dr4
e’ 4
fr4

\time 3/8
r8

g’4

4.3. “Reduced-Ly” Parsing 21

Abjad Documentation, Release 2.13

}

>>> show (result)

f ;
S E——" 5 f
'iﬁ L 9 1 [N . i

22 Chapter 4. Parsing

CHAPTER
FIVE

5.1 Breves, longas and other long durations

DURATIONS

A breve is a duration equal to two whole notes. Abjad supports breve-durated notes, rests and chords with and

without dots.
You can create breves with a LilyPond input string:

>>> note_1 = Note(r"c’\breve")
>>> note_2 = Note (r"d’ \breve.")

Or with an explicit duration:

>>> note_3 = Note("e’", Duration (2, 1))
>>> note_4 = Note("f’", Duration (3, 1))

The written duration of a breve always returns an Abjad duration object:

>>> notes = [note_1, note_2, note_3, note_4]
>>> for note in notes:
note, note.written_duration

Note ("¢’ \\breve"), Duration (2, 1))

(

(Note ("d’ \\breve."), Duration (3, 1))
(Note ("e’\\breve"), Duration(2, 1))

(Note ("f’\\breve."), Duration(3, 1))

LilyPond renders breves like this:

>>> staff = Staff (notes)
>>> show (staff)

f)

o

i)
L. 3

U dor 1o =
Abjad also supports longas. A longa equals two breves:

>>> note_1 = Note(r"c’\longa")
>>> note_2 = Note("d’", Duration(6, 1))

>>> notes = [note_1, note_2]
>>> for note in notes:
note, note.written_duration

(Note ("c’\\longa"), Duration (4, 1))
(Note ("d’"\\longa."), Duration(6, 1))

>>> staff = Staff (notes)
>>> show (staff)

23

Abjad Documentation, Release 2.13

4}

- F i)
_&. L W i
A% T |

()

o

of-

A maxima is a duration equal to two longas:

>>>
>>>

note_1 Not
note_2 = Not

notes = [not
for note in
note, no

e(r"c’ \maxima")
e("d’", Duration (12, 1))

e_1, note_2]
notes:
te.written_duration

(Note ("c’\\maxima"), Duration(8, 1))

(Note ("d’ \\maxima."), Duration (12, 1))

Abjad supports maximas and LilyPond supplies a \maxima command. But you can not use Abjad to render
maxima-valued notes, rests and chords because LilyPond supplies no glyphs for these durations.

The same is true for all durations greater than or equal to eight whole notes: you can initialize and work with all
such durations in Abjad but you will only be able to use LilyPond to render as notation those values equal to less
than eight whole notes.

5.2 LilyPond multipliers

LilyPond provides an asterisk * operator to scale the durations of notes, rests and chords by arbitrarily positive
rational values. LilyPond multipliers are inivisible and generate no typographic output of their own. However,
while independent from the typographic output, LilyPond multipliers do factor into calculations of duration.

Abjad implements LilyPond multpliers as the settable 11 1ypond_duration_multiplier attribute imple-
mented on notes, rests and chords.

>>>
>>>

>>>
c’4

note = Note (
note.lilypon

f (note)
* 1/2

nergmy

d_duration_multiplier = Multiplier (1, 2)

>>> note.written_duration
Duration (1, 4)
>>> note.lilypond_duration_multiplier
Multiplier (1, 2)
>>> inspect (note) .get_duration ()
Duration (1, 8)

>>>

LilyPond multipliers scale the durations of the half notes below to that of quarter notes:

show (note)

>>> quarter_notes = 4 x Note("c’4")

>>> half_note = Note("c’2")

>>> half note.lilypond_duration_multiplier = Multiplier (1, 2)

>>> half_notes = 4 x half_note

>>> top_staff = stafftools.RhythmicStaff (quarter_notes)

>>> bottom_staff = stafftools.RhythmicStaff (half_notes)

>>> staff_group = scoretools.StaffGroup ([top_staff, bottom_staff])

>>> show (staff_group)

24 Chapter 5. Durations

Abjad Documentation, Release 2.13

Note that the LilyPond multiplication * operator differs from the Abjad multiplication * operator. LilyPond
multiplication scales duration of LilyPond notes, rests and chords. Abjad multiplication copies Abjad containers
and leaves.

5.3 What’s the difference between duration and written duration?

Abjad uses the term “written duration” to refer to the face value of notes, rests and chords prior to time-scaling
effects of tuplets or measures with unusual time signatures. Abjad’s written duration corresponds to the informal
names most frequently used when talking about note duration.

Consider the measure below:

>>> measure = Measure((5, 16), "cl6 c c c c")
>>> beam = spannertools.BeamSpanner ()

>>> pbeam.attach ([measure])

>>> staff = stafftools.RhythmicStaff ([measure])

>>> show (staff)

. erral

Every note in the measure equals one sixteenth of a whole note:

>>> note = measurel[0]
>>> inspect (note) .get_duration ()
Duration (1, 16)

But now consider this measure:

>>> tuplet = Tuplet((4, 5), "cl6 c c c c")

>>> measure = Measure((4, 16), [tuplet])

>>> pbeam = spannertools.BeamSpanner ()

>>> beam.attach ([measure])

>>> staff = stafftools.RhythmicStaff ([measure])

>>> show (staff)

5

T

The notes in this measure are equal to only one twentieth of a whole note: Every note in this measures

>>> note = tuplet[0]
>>> inspect (note) .get_duration ()
Duration (1, 20)

The notes in this measure are “sixteenth notes” with a duration equal to a value other than 1 /1 6. Abjad formalizes
this distinction in the difference between the duration of these notes (1/20) and written duration of these notes
(1/16).

Written duration is a user-assignable value. Users can assign and reassign the written duration of notes, rests and
chords at initialization or any time thereafter. But the (unqualified) duration of a note, rest or chord is a derived
property Abjad calculates based on the rhythmic context governing the note, rest or chord.

5.3. What’s the difference between duration and written duration? 25

Abjad Documentation, Release 2.13

5.4 What does it mean for a duration to be “assignable”?

Western notation makes it easy to notate notes, rests and chords with durations like 1 /4 and 3/16. But notating
notes, rests and chords with durations like 1 /3 can only be done with recourse to tuplets or ties.

Abjad formalizes the difference between durations like 1/4 and 1/5 in the concept of assignability: a duration
n/d is assignable when and only when numerator n is of the form k (2+*u—-7) and denominator d is of the form
2 xxv. In this definition u and v must be nonnegative integers, k must be a positive integer, and j must be either
Oorl.

Assignability is important because it explains why you can set the duration of any note, rest or chord to 1 /4 but
neverto 1/5.

26 Chapter 5. Durations

Part 111

Examples

27

CHAPTER
SIX

BARTOK: MIKROKOSMOS

This example reconstructs the last five measures of Barték’s “Wandering” from Mikrokosmos, volume III. The end
result is just a few measures long but covers the basic features you’ll use most often in Abjad.

Here is what we want to end up with:

ritard.. _ _ _ _ _ _ _ _ _ _
o e m—— i —— ;%l e 2 T e T
.ﬁémﬁ:‘-—!_ 1 1 I L
- # - 5J'l"—'——_——'—"_ﬁj
np i _ —
—
‘2 o ___‘—'--__,__\‘ '-"I) Tﬁ-—-—_ﬁ_J
9 ! 3 2 22 F g #fin T # n O
A 1 i ¥4 1 1 1 L
X = 3 = J_d_g.ﬁ:ﬁ ‘5’

6.1 The score

We’ll construct the fragment top-down from containers to notes. We could have done it the other way around but
it will be easier to keep the big picture in mind this way. Later, you can rebuild the example bottom-up as an
exercise.

First let’s create an empty score with a pair of staves connected by a brace:

>>> score = Score([])

>>> piano_staff = scoretools.PianoStaff ([])
>>> upper_staff = Staff ([]

>>> lower_staff = Staff([])

>>> piano_staff.append (upper_staff)
>>> piano_staff.append(lower_staff)
>>> score.append (piano_staff)

6.2 The measures

Now let’s add some empty measures:

>>> upper_measures = []

>>> upper_measures.append (Measure ((2, 4), []))
>>> upper_measures.append (Measure ((3, 4), []))
>>> upper_measures.append (Measure ((2, 4), []))
>>> upper_measures.append (Measure ((2, 4), []))
>>> upper_measures.append (Measure ((2, 4), []))

>>> import copy
>>> lower_measures = copy.deepcopy (upper_measures)

29

Abjad Documentation, Release 2.13

>>> upper_staff.extend (upper_measures)
>>> lower_staff.extend(lower_measures)

6.3 The notes

Now let’s add some notes.
We begin with the upper staff:

>>> upper_measures [0] .extend(8
>>> upper_measures[1l].extend(4
>>> upper_measures[2] .extend("c’8
>>> upper_measures[3].append("d’ 2

[4] (2

>>> upper_measures .append ("d’

The first three measures of the lower staff contain only one voice:
>>> lower_measures[0] .extend("b4 d’8 c’8"

>>> lower_measures[l].extend("b8 a8 afd4d c’8 bf8")
>>> lower_measures[2].extend("a8 g8 fs8 gl6 ale")

The last two measures of the lower staff contain two voices each.

We use LilyPond \voiceOne and \voiceTwo commands to set the direction of stems in different voices. And

we set 1s_simltaneous to true for each of the last two measures:

>>> upper_voice = Voice ("b2", name='upper voice’)

>>> command = marktools.LilyPondCommandMark (’voiceOne’)
>>> command.attach (upper_voice)
LilyPondCommandMark (’ voiceOne’) (Voice-"upper voice"{1l})
>>> lower_voice = Voice("b4 a4", name=’lower voice’)

>>> command = marktools.LilyPondCommandMark (' voiceTwo’)
>>> command.attach (lower_voice)
LilyPondCommandMark (’ voiceTwo’) (Voice-"lower voice"{2})
>>> lower_measures[3] .extend ([upper_voice, lower_voice])
>>> lower_measures[3].1is_simultaneous = True

>>> upper_voice = Voice ("b2", name='upper voice’)

>>> command = marktools.LilyPondCommandMark (' voiceOne’)
>>> command.attach (upper_voice)
LilyPondCommandMark (’ voiceOne’) (Voice-"upper voice"{1l})
>>> lower_voice = Voice("g2", name=’lower voice’)

>>> command = marktools.LilyPondCommandMark (’voiceTwo’)
>>> command.attach (lower_voice)
LilyPondCommandMark (’/ voiceTwo’) (Voice-"lower voice"{1l})
>>> lower_measures[4] .extend([upper_voice, lower_voice])
>>> lower_measures[4].is_simultaneous = True

Here’s our work so far:

>>> show (score)

s

|

L EER
I\

LY

Ll
e
LY
L
*

oEa= == % == |
oJ - rdbat *hw = zﬂr ? :F

30

Chapter 6. Bartok: Mikrokosmos

Abjad Documentation, Release 2.13

6.4 The details

Ok, let’s add the details. First, notice that the bottom staff has a treble clef just like the top staff. Let’s change that:

>>> clef = contexttools.ClefMark (’bass’)
>>> clef.attach(lower_staff)
ClefMark ('bass’) (Staff{5})

Now let’s add dynamic marks. For the top staff, we’ll add them to the first note of the first measure and the second
note of the second measure. For the bottom staff, we’ll add dynamic markings to the second note of the first
measure and the fourth note of the second measure:

>>> dynamic = contexttools.DynamicMark (’'pp’)
>>> dynamic.attach (upper_measures[0] [0]
DynamicMark (' pp’) (a’8)

>>> dynamic = contexttools.DynamicMark (‘mp’)
>>> dynamic.attach (upper_measures[1][1])
DynamicMark (‘mp’) (g’ 8)

>>> dynamic = contexttools.DynamicMark (’'pp’)
>>> dynamic.attach (lower_measures[0] [1])
DynamicMark ("pp’) (d’8)

>>> dynamic = contexttools.DynamicMark (‘mp’)
>>> dynamic.attach (lower_measures[1][3])
DynamicMark (‘mp’) (c’8)

Let’s add a double bar to the end of the piece:

>>> score.add_double_bar ()
BarLine (' |.”) (g2)

And see how things are coming out:

>>> show (score)

0 v —

{
%_

Pl e ebe Phe -Jr—p—
—— e e e, B e it ——

Notice that the beams of the eighth and sixteenth notes appear as you would usually expect: grouped by beat. We
get this for free thanks to LilyPond’s default beaming algorithm. But this is not the way Bart6k notated the beams.
Let’s set the beams as Bart6k did with some crossing the bar lines:

>>> upper_leaves = upper_staff.select_leaves (allow_discontiguous_leaves=True)
>>> lower_leaves = lower_staff.select_leaves (allow_discontiguous_leaves=True)

>>> beam = spannertools.BeamSpanner ()
>>> beam.attach (upper_leaves[:4])

>>> beam = spannertools.BeamSpanner ()
>>> beam.attach (lower_leaves[1:5])

>>> beam = spannertools.BeamSpanner ()
>>> pbeam.attach (lower_leaves[6:10])

>>> show (score)

6.4. The details 31

Abjad Documentation, Release 2.13

i

ll

- F
- I
Y pp - mp * =
F - .- Ll..- "!} " JP -
% THL)] L] Ll il 3]] -)
i[O | 1 = | 1
e A | 1 5 L | | |
= o L = o 1 L

pp mp
Now some slurs:

>>> slur = spannertools.SlurSpanner ()
>>> slur.attach (upper_leaves[:5])

>>> slur = spannertools.SlurSpanner ()
>>> slur.attach (upper_leaves[5:])

>>> slur = spannertools.SlurSpanner ()
>>> slur.attach(lower_leaves[1:6])

Hairpins:

>>> crescendo = spannertools.CrescendoSpanner ()
>>> crescendo.attach (upper_leaves[-7:-2])

>>> decrescendo = spannertools.DecrescendoSpanner ()
>>> decrescendo.attach (upper_leaves[-2:])

A ritardando marking above the last seven notes of the upper staff:

>>> markup = markuptools.Markup (’ritard.’)

>>> text_spanner = spannertools.TextSpanner ()

>>> text_spanner.override.text_spanner.bound_details__ left_text = markup
>>> text_spanner.attach (upper_leaves|[-7:])

And ties connecting the last two notes in each staff:

>>> tie = spannertools.TieSpanner ()
>>> tie.attach (upper_leaves[-2:])

>>> note_1 = lower_staff[-2] [’upper voice’][0]
>>> note_2 = lower_staff[-1]["upper voice’][0]
>>> notes = [note_1, note_2]

>>> tie = spannertools.TieSpanner ()

>>> tie.attach (notes)

The final result:

>>> show (score)

A o ritard.. _ _ _ _ _ _ _ _
L) L3 T

= === —==== |

PP T o =1 D i —

I

Y

32 Chapter 6. Bartok: Mikrokosmos

CHAPTER
SEVEN

FERNEYHOUGH: UNSICHTBARE
FARBEN

Note: Explore the abjad/demos/ferneyhough/ directory for the complete code to this example, or import it into
your Python session directly with:

* from abjad.demos import ferneyhough

Mikhial Malt analyzes the rhythmic materials of Ferneyhough’s Unsichtbare Farben in The OM Composer’s Book
2.

Malt explains that Ferneyhough used OpenMusic to create an “exhaustive catalogue of rhythmic cells” such that:
1. They are subdivided into two pulses, with proportions from 1 /1 to 1/11.
2. The second pulse is subdivided successively by 1, 2, 3, 4, 5 and 6.

Let’s recreate Malt’s results in Abjad.

7.1 The proportions

First we define proportions:

>>> proportions = [(1, n) for n in range(l, 11 + 1)]

>>> proportions
ra, n, @€, 2y, 1, 3, (1, 4, @€, 5, &, 6, (1, 7)), 1, 8, (1, 9, (1, 10), (1, 11)]

7.2 The transforms

Next we’ll show how to divide a quarter note into various ratios, and then divide the final fie chain of the resulting
tuplet into yet another ratio:

def make_nested_tuplet (
tuplet_duration,
outer_tuplet_proportions,
inner_tuplet_subdivision_count,
) 8
outer_tuplet = Tuplet.from_duration_and_ratio(

tuplet_duration, outer_tuplet_proportions)

inner_tuplet_proportions = inner_tuplet_subdivision_count * [1]
last_leaf = outer_tuplet.select_leaves () [-1]
right_tie_chain = inspect (last_leaf) .get_tie_chain()
right_tie_chain.to_tuplet (inner_tuplet_proportions)
return outer_tuplet

33

Abjad Documentation, Release 2.13

>>> tuplet = make_nested_tuplet (Duration(1l, 4), (1, 1), 5)
>>> staff = stafftools.RhythmicStaff ([tuplet]
>>> show (staff)

——8——

>>> tuplet = make_nested_tuplet (Duration (1, 4), (2, 1), 5)
>>> staff = stafftools.RhythmicStaff ([tuplet])
>>> show (staff)

3]
5

L]
Q—J—‘—d -

>>> tuplet = make_nested_tuplet (Duration(l, 4), (3, 1), 5)
>>> staff = stafftools.RhythmicStaff ([tuplet])
>>> show (staff)

—B—J‘—‘—l—i—l—d—

A tie chain is a selection of notes or chords connected by ties. It lets us talk about a notated rhythm of 5/16, for
example, which cannot be expressed with only a single leaf.

Note how we can divide a tuplet whose outer proportions are 3/ 5, where the second tie chain requires two notes
to express the 5/1 6 duration:

>>> normal_tuplet = Tuplet.from_duration_and_ratio (Duration(l, 4), (3, 5))
>>> staff = stafftools.RhythmicStaff ([normal_tuplet])
>>> show (staff)

I3

>>> subdivided_tuplet = make_nested_tuplet (Duration (1, 4), (3, 5), 3)
>>> staff = stafftools.RhythmicStaff ([subdivided_tuplet])
>>> show (staff)

—6:5

7.3 The rhythms

Now that we know how to make the basic building block, let’s make a lot of tuplets all at once.
We’ll set the duration of each tuplet equal to a quarter note:

>>> duration = Fraction(l, 4)

And then we make one row of rhythms, with the last tie chain increasingly subdivided:

def make_row_of_nested_tuplets (tuplet_duration, outer_tuplet_proportions, column_count) :
assert 0 < column_count
row_of_nested_tuplets = []
for n in range (column_count) :
inner_tuplet_subdivision_count = n + 1
nested_tuplet = make_nested_tuplet (
tuplet_duration, outer_tuplet_proportions, inner_tuplet_subdivision_count)
row_of_nested_tuplets.append(nested_tuplet)
return row_of_nested_tuplets

34 Chapter 7. Ferneyhough: Unsichtbare Farben

Abjad Documentation, Release 2.13

(2, 1), 6)

>>> tuplets = make_row_of_nested_tuplets (duration,
>>> staff = stafftools.RhythmicStaff (tuplets)

>>> show (staff)

g g r————3'—;——ﬂ P r 3 e 1T 3 3
[t 3 — k ———d——
ed b J) FF) E;J) T

If we can make one single row of rhythms, we can make many rows of rthythms. Let’s try:

def make_rows_of_nested_tuplets (tuplet_duration, row_count,

assert 0 < row_count
rows_of_nested_tuplets = []
for n in range (row_count) :
outer_tuplet_proportions = (1, n + 1)
row_of_nested_tuplets = make_row_of_nested_tuplets(
tuplet_duration, outer_tuplet_proportions,
rows_of_nested_tuplets.append(row_of_nested_tuplets)
return rows_of_nested_tuplets

score = Score ()
for tuplet_row in make_rows_of_nested_tuplets (duration,
score.append (stafftools.RhythmicStaff (tuplet_row))

>>>

>>> 4,

>>>

column_count) :

column_count)

6) :

show (score)
—3. — 55— —3—
ed d o Jdd JIdd STl ST dosee
3 3 3
—3— 3 —3— 3 —35— 33—
e d [T JJ) JTJJT)] 0) JTTTTD
4:3 rd:31 — 3 — — 53 —
edd JJJ) T FrT) \JTITI) TR
—39 5 rjiﬂ‘——j A r———f-ﬁ-———ﬁ r———ji3'————ﬂ
edd JJIJ) JJJ)) \JI) TS

That’s getting close to what we want, but the typography isn’t as good as it could be.

7.4 The score

First we’ll package up the logic for making the un-styled score into a single function:

def make_score (tuplet_duration, row_count, column_count) :

score = Score ()
rows_of_nested_tuplets = make_rows_of_nested_tuplets
tuplet_duration, row_count, column_count)
row_of_nested_tuplets in rows_of_nested_tuplets:

staff = stafftools.RhythmicStaff (row_of_nested_tuplets)
time_signature = contexttools.TimeSignatureMark ((1, 4))
time_signature.attach (staff)

score.append(staff)

return score

for

>>> score = make_score (Duration(l, 4), 4, 6)

>>> show (score)

7.4. The score

35

Abjad Documentation, Release 2.13

—3— —&— —3—
jl——‘L———lL———'L———II::L——Il————lt:r:l-ﬂ'—————.ﬂ‘—-1-——.—————'1.1F‘1-—ﬂ. -‘1"1&‘—
3 3 3
—3= 3 —3=— 5] —5— —3—
THS_.LJJJ d dddld . d o Jdddad
43 rd:3 1 —d:3 — 53 — —
S0 o oo adleodedele deedddle dddadds
1 5 5

BN sl spmiioremllzrrontirrrrry)

Then we’ll apply some formatting overrides to improve its overall appearance:

def configure_score (score):
score.set.proportional notation_duration = schemetools.SchemeMoment (1, 56)
score.set.tuplet_full_ length = True
score.override.bar_line.stencil = False
score.override.bar_number.transparent = True
score.override.spacing_spanner.uniform_stretching = True
score.override.spacing_spanner.strict_note_spacing = True
score.override.time_signature.stencil = False
score.override.tuplet_bracket.padding = 2
score.override.tuplet_bracket.staff_padding = 4
score.override.tuplet_number.text = schemetools.Scheme (' tuplet-number::calc-fraction-text’)

>>> configure_score (score)
>>> show (score)
— 32—

J] . j — N i
Sy J 00 /] /7]
N J L J j) — —
A) L J . S 4 J)

4 — —32 ———

T 54 1T axd 1

The proportional spacing makes the score much easier to read, but now the notation is much too big. We’ll clean

36 Chapter 7. Ferneyhough: Unsichtbare Farben

Abjad Documentation, Release 2.13

that up next.

7.5 The LilyPond file

Let’s adjust the overall size of our output, and put everything together:

def make_lilypond_file (tuplet_duration,
score = make_score (tuplet_duration,

configure_score (score)
lilypond_file =

row_count,
row_count,

configure_lilypond_file(lilypond_file)

return lilypond_file

def configure_lilypond_file(lilypond_file):

lilypond_file.default_paper_size

lilypond_file.global_staff_ size

lilypond_file.layout_block.indent
lilypond_file.layout_block.ragged_right =

r11x17",
12

0
True

lilypond_file.paper_block.ragged_bottom = True
spacing_vector = layouttools.make_spacing_vector (0, O,
lilypond_file.paper_block.system system_spacing

>>> lilypond_file = make_lilypond_file (Duration(1,

>>> show(lilypond_file)

"portrait’

column_count) :
column_count)

lilypondfiletools.make_basic_lilypond_file (score)

0)

spacing_vector

4), 11,

—d—

e T e e B e = B e s~~~ ==
JI'; JM J j| . J IJ JHJ J J-“j IJ J JJNJ JIJ J'JJ&J:JJ‘
&l i | F I]] J . 3 [y| “J) —— ;" T 4 | Frrrrr
Jli J i‘ IJ' i 4 IJ" J“ 4 J J J: P IJ J L J J J IJ 4 J j | |
b s) ?:J | JJJ i JJJ?}JJJJJJjJJ
b) Al J_J Il J’.‘r - p I] | _J I i J-.J;_ T4
ﬁ.j) ‘F]' '] ‘J‘JI J: J .J'.Il L J 1J'Jr J J”h.l 7| ‘J'JI L J ”J L J ‘
}..J y’ IFI] .\.] ‘PJI J: J .JI'J J iJ IJ'J' p| J;\fi) ‘J'JI J JJJ | ‘
. T” I,hJ. wj £Jd o ? J 'fJI Y IJ 3 5 Jg i
Y w-’ Y wj] - 1 I } — JJN —] J T
(Y Y R T e s B > s s s B 3 s s s s B e e e e B
37

7.5. The LilyPond file

Abjad Documentation, Release 2.13

38 Chapter 7. Ferneyhough: Unsichtbare Farben

CHAPTER
EIGHT

LIGETI|: DESORDRE

Note: Explore the abjad/demos/desordre/ directory for the complete code to this example, or import it into your
Python session directly with:

* from abjad.demos import desordre

This example demonstrates the power of exploiting redundancy to model musical structure. The piece that con-
cerns us here is Ligeti’s Désordre: the first piano study from Book I. Specifically, we will focus on modeling the

first section of the piece:

ETUDE 1:, DESORDPRE" De'dige & Pierre Beuwlez Gyorgy Ligetc
K 1985
Molter vivace, Vigerodor, molte wWimicr o=76 5 o
P S A S T S s Vit S
S E e LA BT R S P h e T | I e
P

Lt 8

o iissgisnyd P

Eﬂ‘ >F = F 1 ol

= L — = f A = s L
1 —:EM:W #} 33T il v i T - -._'.['x? — m‘;

ang 3 T Lus = | SEIN PR oy

- > L r[Fq-
H T
_ T AT TLERMF4R T,
[] Z — AY . ‘o2 ia I LW 1 FY Pl L 1 T ¥
: t R AP e e
L 1] | a1 | Y i 1 —
3 >
> > > I r]' | >
> > > > >
> >

The redundancy is immediately evident in the repeating pattern found in both staves. The pattern is hierarchical.
At the smallest level we have what we will here call a cell:

=
f) |

——e

JP
There are two of these cells per measure. Notice that the cells are strictly contained within the measure (i.e., there
are no cells crossing a bar line). So, the next level in the hierarchy is the measure. Notice that the measure sizes
(the meters) change and that these changes occur independently for each staff, so that each staff carries it’s own
sequence of measures. Thus, the staff is the next level in the hierarchy. Finally there’s the piano staff, which is
composed of the right hand and left hand staves.

In what follows we will model this structure in this order (cell, measure, staff, piano staff), from bottom to top.

39

Abjad Documentation, Release 2.13

8.1 The cell

Before plunging into the code, observe the following characteristic of the cell:

1. It is composed of two layers: the top one which is an octave “chord” and the bottom one which is a straight
eighth note run.

2. The total duration of the cell can vary, and is always the sum of the eight note funs.
3. The eight note runs are always stem down while the octave “chord” is always stem up.

4. The eight note runs are always beamed together and slurred, and the first two notes always have the dynamic
markings f* ‘p’.

The two “layers” of the cell we will model with two Voices inside a simultaneous Container. The top Voice will
hold the octave “chord” while the lower Voice will hold the eighth note run. First the eighth notes:

>>> pitches = [1,2,3]

>>> notes = notetools.make_notes (pitches, [(1, 8)])
>>> spannertools.BeamSpanner (notes)

BeamSpanner (cs’8, d’'8, ef’8)

>>> spannertools.SlurSpanner (notes)

SlurSpanner (cs’8, d’8, ef’8)

>>> contexttools.DynamicMark (' £") (notes[0]
DynamicMark (" £’) (cs’8)

>>> contexttools.DynamicMark (p’) (notes[1]
DynamicMark ("p’) (d’8)

>>> voice_lower = Voice (notes)

>>> voice_lower.name = 'rh_lower’

>>> marktools.LilyPondCommandMark (’ voiceTwo’) (voice_lower)
LilyPondCommandMark (’ voiceTwo’) (Voice-"rh_lower" {3}

The notes belonging to the eighth note run are first beamed and slurred. Then we add the dynamic marks to the
first two notes, and finally we put them inside a Voice. After naming the voice we number it 2 so that the stems of
the notes point down.

Now we construct the octave:

>>> import math

>>> n = int (math.ceil (len(pitches) / 2.))

>>> chord = Chord([pitches[0], pitches[0] + 12], (n, 8)
>>> marktools.Articulation(’>") (chord)
Articulation(’>") (<cs’ cs’’>4)

>>> voice_higher = Voice ([chord])

>>> voice_higher.name = ’'rh_higher’

>>> marktools.LilyPondCommandMark (' voiceOne’) (voice_higher)
LilyPondCommandMark (' voiceOne’) (Voice-"rh_higher"{1})

The duration of the chord is half the duration of the running eighth notes if the duration of the running notes
is divisible by two. Otherwise the duration of the chord is the next integer greater than this half. We add the
articulation marking and finally ad the Chord to a Voice, to which we set the number to 1, forcing the stem to
always point up.

Finally we combine the two voices in a simultaneous container:

>>> container = Container ([voice_lower, voice_higher])
>>> container.is_simultaneous = True

This results in the complete Désordre cell:

>>> cell = Staff([container])
>>> show (cell)

40 Chapter 8. Ligeti: Désordre

Abjad Documentation, Release 2.13

—
JP

Because this cell appears over and over again, we want to reuse this code to generate any number of these cells.

We here encapsulate it in a function that will take only a list of pitches:

def make_desordre_cell (pitches) :
/’’The function constructs and returns a #*Désordre cellx*.
‘pitches’ is a list of numbers or, more generally, pitch tokens.
notes = [notetools.Note(pitch, (1, 8)) for pitch in pitches]
spannertools.BeamSpanner (notes)
spannertools.SlurSpanner (notes)
contexttools.DynamicMark (' £/) (notes[0]
contexttools.DynamicMark ("p’) (notes[1]

make the lower voice

lower_voice = voicetools.Voice (notes)

lower_voice.name = ’'RH Lower Voice’
marktools.LilyPondCommandMark (' voiceTwo’) (lower_voice)

n = int (math.ceil (len(pitches) / 2.))

chord = chordtools.Chord([pitches[0], pitches[0] + 12], (n, 8)
marktools.Articulation(’>’) (chord)

make the upper voice

upper_voice = voicetools.Voice ([chord])
upper_voice.name = ’'RH Upper Voice’
marktools.LilyPondCommandMark (' voiceOne’) (upper_voice)

combine them together
container = containertools.Container ([lower_voice, upper_voice])
container.is_simultaneous = True

make all 1/8 beats breakable
for leaf in lower_voice.select_leaves () [:—1]:

marktools.BarLine(’’) (leaf)

return container

Now we can call this function to create any number of cells. That was actually the hardest part of reconstructing
the opening of Ligeti’s Désordre. Because the repetition of patters occurs also at the level of measures and staves,

we will now define functions to create these other higher level constructs.

8.2 The measure

We define a function to create a measure from a list of lists of numbers:

def make_desordre_measure (pitches):
’7’Constructs a measure composed of x*Désordre cells+.

‘pitches’ is a list of lists of number (e.g., [[1, 2, 3], [2, 3, 4]])

The function returns a measure.
s

for sequence in pitches:
container = make_desordre_cell (sequence)
time_signature = inspect (container) .get_duration ()
time_signature = mathtools.NonreducedFraction (time_signature)
time_signature = time_signature.with_denominator (8)
measure = measuretools.Measure (time_signature, [container])

return measure

8.2. The measure

41

Abjad Documentation, Release 2.13

The function is very simple. It simply creates a DynamicMeasure and then populates it with cells that are created
internally with the function previously defined. The function takes a list pitches which is actually a list of lists
of pitches (e.g., [[1,2,31, [2,3,4]1]. The list of lists of pitches is iterated to create each of the cells to
be appended to the DynamicMeasures. We could have defined the function to take ready made cells directly, but
we are building the hierarchy of functions so that we can pass simple lists of lists of numbers to generate the full
structure. To construct a Ligeti measure we would call the function like so:

>>> pitches = [[0, 4, 71, [0, 4, 7, 91, [4, 7, 9, 1111
>>> measure = make_desordre_measure (pitches)
>>> staff = Staff ([measure])

>>> show (staff)

=

-
re

8.3 The staff

Now we move up to the next level, the staff:

def make_desordre_staff (pitches):
staff = stafftools.Staff ()
for sequence in pitches:
measure = make_desordre_measure (sequence)
staff.append(measure)
return staff

The function again takes a plain list as argument. The list must be a list of lists (for measures) of lists (for cells) of
pitches. The function simply constructs the Ligeti measures internally by calling our previously defined function
and puts them inside a Staff. As with measures, we can now create full measure sequences with this new function:
>>> pitches = [[[-1, 4, 5], (-1, 4, 5, 7, 911, ([0, 7, 91, [-1, 4, 5, 7, 911]

>>> staff = make_desordre_staff (pitches)
>>> show (staff)

el . i
PP
fP fP

8.4 The score

Finally a function that will generate the whole opening section of the piece Désordre:

def make_desordre_score (pitches) :
’7’’Returns a complete PianoStaff with Ligeti music!’’’

assert len(pitches) ==
piano_staff = scoretools.PianoStaff ()

build the music...

for hand in pitches:
staff = make_desordre_staff (hand)
piano_staff.append(staff)

set clef and key signature to left hand staff...
contexttools.ClefMark ("bass’) (piano_staff[1])

42 Chapter 8. Ligeti: Désordre

Abjad Documentation, Release 2.13

contexttools.KeySignatureMark ('b’, 'major’) (piano_staff[1l])

wrap the piano staff in a score, and return
score = scoretools.Score ([piano_staff])

return score

The function creates a PianoStaff, constructs Staves with Ligeti music and appends these to the empty PianoStaff.
Finally it sets the clef and key signature of the lower staff to match the original score. The argument of the function
is a list of length 2, depth 3. The first element in the list corresponds to the upper staff, the second to the lower
staff.

The final result:

>>> top [
-1, 4, 51, [-1, 4, 5, 7, 911,
0 7/ 9]/ [711 4! 5/ 7/ 9]]!
2, 4, 5, 7, 91, [0, 5, 711,

4, 5, 711,
3, 2, 4, 5, 711,

’
r
3, -1, 0, 2,
3 [~
-3, 9, 11, 12, 1411,

o 5 Tl |
S5, 7, 9, 111, [2, 4, 511,

5, 4, 5, 7, 9, 11, 1211,

. 9, 111, [2, 9, 11, 12, 1411,

>>> bott
, —4, =21, [-9, -4, -2, 1, 3]],

r =2, 11, [-9, -4, -2, 1, 311,

v 2y Lp 3, 61, [=4, =2, 111,

r =6, -4, -2, 1, 3, 6, 111,

, =2, 11, [-6, -2, 1, 3, -211,

(1, 31, [-6, 3, 6, -6, -4]1],

41 7111 79/ 76! 74]1 [7141 711/ 7911/
1, -2, 1, -6, -4, -2, 1, 311,

, 1, 31, [-6, -4, -2, 1, 311,

>>> score = make_desordre_score ([top, bottom])

>>> from abjad.tools import documentationtools
>>> lilypond_file = documentationtools.make_ligeti_example_lilypond_file (score)

>>> show (lilypond_file)

Lebe 2’2
: — 1 =
F re

Lh ¥ "
—
v

-
L]
T
™

gl e .y

bl)
anit)
1

s

Now that we have the redundant aspect of the piece compactly expressed and encapsulated, we can play around

8.4. The score 43

Abjad Documentation, Release 2.13

with it by changing the sequence of pitches.

In order for each staff to carry its own sequence of independent measure changes, LilyPond requires some special
setting up prior to rendering. Specifically, one must move the LilyPond Timing_translator out from the
score context and into the staff context.

(You can refer to the LilyPond documentation on Polymetric notation to learn all about how this works.)

In this example we a custom documentationtools function to set up our LilyPond file automatically.

44 Chapter 8. Ligeti: Désordre

http://lilypond.org/doc/v2.12/Documentation/user/lilypond/Displaying-rhythms#Polymetric-notation

CHAPTER
NINE

MOZART: MUSIKALISCHES
WURFELSPIEL

Note: Explore the abjad/demos/mozart/ directory for the complete code to this example, or import it into your
Python session directly with:

* from abjad.demos import mozart

Mozart’s dice game is a method for aleatorically generating sixteen-measure-long minuets. For each measure,
two six-sided dice are rolled, and the sum of the dice used to look up a measure number in one of two tables
(one for each half of the minuet). The measure number then locates a single measure from a collection of musical
fragments. The fragments are concatenated together, and “music” results.

Implementing the dice game in a composition environment is somewhat akin to (although also somewhat more
complicated than) the ubiquitous hello world program which every programming language uses to demonstrate its
basic syntax.

Note: The musical dice game in question (k516f) has long been attributed to Mozart, albeit inconclusively. Its
actual provenance is a musicological problem with which we are unconcerned here.

9.1 The materials

At the heart of the dice game is a large collection, or corpus, of musical fragments. Each fragment is a single
3/8 measure, consisting of a treble voice and a bass voice. Traditionally, these fragments are stored in a “score”,
or “table of measures”, and located via two tables of measure numbers, which act as lookups, indexing into that
collection.

Duplicate measures in the original corpus are common. Notably, the 8th measure - actually a pair of measures
represent the first and second alternate ending of the first half of the minuet - are always identical. The last measure
of the piece is similarly limited - there are only two possibilities rather than the usual eleven (for the numbers 2 to
12, being all the possible sums of two 6-sided dice).

How might we store this corpus compactly?

Some basic musical information in Abjad can be stored as strings, rather than actual collections of class instances.
Abjad can parse simple LilyPond strings via p, which interprets a subset of LilyPond syntax, and understands
basic concepts like notes, chords, rests and skips, as well as beams, slurs, ties, and articulations.

>>> staff = Staff("""
c’4 (d'4 <cs’ e'>8) —-. r8
<g’ b’ d’’>4 ~ \marcato ~ <g’ b’ d’'’>1
. llll")
>>> f (staff)
\new Staff {
c’4 (

45

http://en.wikipedia.org/wiki/Hello_world_program

Abjad Documentation, Release 2.13

WOLFGANG AMADEUS MOZART

Musikalisches Wiirfelspiel

Table of Measure Numbers

Part One Part Two
] 11 u vV v vl Vil I n m v v vi Vil VIl
2 96 | 22| 141 | 41105 122 11] 30 2 70 [121] 26 9112 49109 14
3 12 6128 63146 | 46| 134 | 81 I3 17| 39126 6174 18116 83
4 69 | 95 158 | 13153 | ss |10 24 4 66 | 139 15132 73| 58| 145 | 79
§ | 40| 173 85161 2 (159 | 100 g 9% | 176 71 34| 67160 521|170
6 1148 | 74163 | 45| 80| 97| 36| 107 6 25 | 143 | 64 | 125 | 76| 136 1 93
7 1104 [157 | 27 | 167 [154 | 68 [118 | 91 7 p138 | 71150 29101 162 23 | 151
8 li1s2]| 60171 | 53| 99133 | 21| 127 8 16 | 155 | s7 175 | 43 [168 | 89 | 172
9 |19 84|114] so[140| 86| 169 | 94 9 J120]| 88| 48 | 166 | St 115 | 72| 111
10 98 | 142 | 42 | 156 | 75129 | 62| 123 10| es| 77| 19| 82137] 38| 149 8
11 3] 87 |165] 61 [135 47 | 147 | 33 11 | 102 4] 31| 164|144 | 59173 | 78
12 s4|130| 10103 | 28| 37| 106 5 12 35| 20108 92| 12124 44|13
Table of Measures
a7 e 2 3 4 pgp 5 6 4 A
o K ' ""lﬂ; ’ = F__F F"»—'
1 } } Y % T . _{ 1 }
w + ~+ l - t
%ﬂ
& 3
: .-—“' ? [q; i { | o T 1
| o | 1 Ta#—# +— + — L
' gL == ! *F

Figure 9.1: Part of a pen-and-paper implementation from the 20th century.

46 Chapter 9. Mozart: Musikalisches Wiirfelspiel

Abjad Documentation, Release 2.13

d’ 4

<cs’ e’>8 -\staccato)
r8

<g’ b’ d’’>4 "\marcato ~
<g’ b’ d’’>1

>>> show (staff)

90

So, instead of storing our musical information as Abjad components, we’ll represent each fragment in the corpus
as a pair of strings: one representing the bass voice contents, and the other representing the treble. This pair of
strings can be packaged together into a collection. For this implementation, we’ll package them into a dictionary.
Python dictionaries are cheap, and often provide more clarity than lists; the composer does not have to rely on
remembering a convention for what data should appear in which position in a list - they can simply label that data
semantically. In our musical dictionary, the treble voice will use the key ‘t” and the bass voice will use the key ‘b’.

>>> fragment = {’t’: "g’’8 (e’"'8 c’''8)", 'b’': '<c e>4 r8’}

Instead of relying on measure number tables to find our fragments - as in the original implementation, we’ll
package our fragment dictionaries into a list of lists of fragment dictionaries. That is to say, each of the sixteen
measures in the piece will be represented by a list of fragment dictionaries. Furthermore, the 8th measure, which
breaks the pattern, will simply be a list of two fragment dictionaries. Structuring our information in this way lets
us avoid using measure number tables entirely; Python’s list-indexing affordances will take care of that for us.
The complete corpus looks like this:

def make_mozart_measure_corpus () :
return |
[
{"b’: 'c4 r8", 't’: "e’’8 c’’8 g’8"},
{"b’: "<c e>4 r8’, 't': "g’'8 c’'’8 e'’8"},
{"b’: "<c e>4 r8’, 't’': "g’'’8 (e’'’'8 c’'’8)"},
{"b’: "<c e>4 r8’, 't’: "c'’16 b'16 c’''16 e’'’16 g'l6 c’'’1l6"},
{’b’: "<c e>4 r8’, "t’: "c’'’’16 b’'’16 c’'’’16 g’'’1l6 e’'’16 c’'’1l6"},
{"b’: "c4 r8", 't’: "e’’16 d’'16 e’’16 g'’16 c'’’'16 g’'’1l6"},
{"b’: "<c e>4 r8’, "t’: "g’'’8 f’’16 e’’16 d’’16 c’’16"},
{"b’: "<c e>4 r8’, 't': "e’’1l6 c'’16 g'’16 e’’16 c’'’'’16 g'’"1l6"},
{’b’: "<c e>16 gl6 <c e>16 gl6 <c e>16 gl6’, 't’: "c’'’8 g’8 e’'’8"},
{!b!: I<C e>4 r8!’ Itl: "g!!8 CIIS e/!g"}’
{"b’: 'c8 c8 c8’, "t’: "<e’ c’'’>8 <e’ c’'’'>8 <e’ c’'’'>8"},

{’b’: "c4 r8', 't’: "e’’8 c’'’'8 g’'8"},

{’b": "<c e>4 r8’, 't’: "g’8 c’’8 e’’8"},

{’b’: '<c e>4 r8’, 't’': "g’’8 e’’8 c’'’8"},

{’b": "<e g>4 r8’, 't’: "c’’16 g’l6 c’’16 e’’16 g'l6 c’'’16"},
{’b’: "<c e>4 r8’, 't’: "c’’’16 b’’16 c’’’16 g’'’16 e’’16 c''16"},
{'b": "c4 r8’, 't’: "e’’16 d’’16 e’’16 g’’16 c’'’’16 g'’16"},
{’b’: "<c e>4 r8’, 't’: "g’’8 f'’16 e’’16 d’’16 c’'’16"},

{’b’: "<c e>4 r8’, 't’: "c’’16 g’'l6 e’’16 c'’16 g’'’16 e’’16"},
{’b": "<c e>4 r8’, 't’: "c’'’8 g’'8 e’’8"},

{’b’: "<c e>4 <c g>8’, 't’: "g’'’8 c'’'8 e’’8"},

{’b”: "c8 c8 c8’, 't': "<e’ c'’>8 <e’ c’'’'>8 <e’ c’'’'>8"},

{"b’: ’'<b, g>4 g,8", "t’: "d’’16 e’’16 £'716 d’’16 c’’16 b'16"},
{"b’: ’"g,4 r8’, 't’: "b’8 d’’8 g’’'8"},
{b’: ’'g,4 r8’, 't’: "b’8 d’’16 b’16 a’l6 g'1l6"},
{'b’: ’<g b>4 r8’, ’t’: "f’'’8 d’’8 b'8"},
{b’: ’<b, d>4 r8’, 't’: "g’’16 f£s’’16 g’’16 d’’16 b’16 g’ 16"},
{"b’: ’<g b>4 r8’, ’t’: "£'16 e’’16 £/716 d’’16 c’'’16 b'16"},
("b’: ’'<g, g>4 <b, g>8’,

7t’: "b’16 c’’16 d’’16 e’’16 £//16 d’’16"},
{"b’: "g8 g8 g8’, "t’: "<b’ d’’>8 <b’ d’’>8 <b’ d’’>8"},
{"b’: ’g,4 r8’, ’t’: "b’16 c’’16 d’’16 b’16 a’lé6 g’16"},

9.1. The materials 47

Abjad Documentation, Release 2.13

Itl: "dll8 (b18 g18)"),
"t’: "b’1l6 a’l6 b’'l6 c’’16 d’'’16 b’'1l6"},

e>4 r8’, 't’: "c’’16 b’16 c’’16 e’’16 g’'8"},

"t’: "e’’16 c’’16 b'16 c’’16 g’'8"},

g>4 r8’, 't’: "c’'’'8 (g’'8 e’'8)"},

g>4 r8’, 'tr: "

rrg orrg grgn},

©
g>4 r8', 't’: "c’’16 b’16 c’’'16 g’l6 e’l6 c’'l6"},
@

e>4 r8’, 't’': "

g>4 r8’, 't’: "
g>4 r8’, 'tr: "
g>4 r8’, 't’: "
g>4 r8’, 'tr: "

18 c’’16 d’’'16 e’'’8"},

e’’>8 <c’’ e’'’>16 <d’’ f’'’'>16 <e’’ g’'’'>8"},
C!!8 elll6 C!!16 g'8"},

c’’16 g’l6 e’’'16 c’"16 g’'’'8"},
C!!8 el!l6 C!!16 gll8"},
c’’16 e’’16 c'’16 g'1l6 e’'8"},

"t’: "fs’’8 a’’l6 fs’’16 d’'’16 fs’’'16"},

c8 c8’, 't’: "<fs’ d’’>8 <d’’ fs’’>8 <fs’’ a’’>8"},

"t’: "d’’16 a’lée fs’’16 d'’16 a’’l6 fs’’16"},

c8 c8’, 't’: "<fs’ d’'’>8 <fs’ d’'’>8 <fs’ d'’>8"},

t’: "d’’8 a’8 ~\\turn fs’’8"},
"t’: "d’’16 cs’’16 d’’16 fs’’16 a’’l6 fs’’1l6"},

a>4 <c a>8’, 't’: "fs’’'8 a’’8 4d’'’8"},

<c fs>8 <c a>8’, 't’: "a’8 a’l6 d’'’"1l6 fs’'’'8"},

c8 c8’, 't’: "<d'’ fs’’'>8 <d’'’ fs’'’>8 <d’’ fs’'’>8"},
d>8 <c d>8 <c d>»8’, ’'t’: "fs’’8 fs’’16 d'’16 a’’8"},
a>4 r8’, ’'t’: "fs’’1l6 d’’16 a’l6e a’’le fs’'’16 d'’1l6"},

'<b, d>8 <b, d>8 <b, d>8’,

"g’’1l6 fs’’16 g’'’16 b’’16 d’'’'8"},

'<p, d>4 r8’, ’'t’: "g’'’8 b’’16 g’'’1l6 d’'’16 b’le"},
'<p, d>4 r8’, 't’: "g’'’8 b’’8 d4''8"},

'<pb, g>4 r8’, ’'t’: "a’8 fs’16 g’'l6 b’1l6 g’’le6"},
'<pb, d>4 <b, g>8’,

"g’’1l6 fs’’16 g’’16 d’’16 b’1l6 g’'l6"},

Itl: "gllg b7716 glll6 d7716 glll6ll},
r8’, 't’: "d’'’8 g’’16 d’'’16 b’le d’'’1l6"},
r8l, Itl: "d778 dlll6 g7716 b,’8"},
<b, d>8 <b, g>87,

"y’’’ 16 glll6 fs’’16 glll6 dr’s"y},
'<b, d>4 r8’, ’'t’: "g’'’8 g’’16 d'’16 b’’8"},
'<b, d>4 r8’, 't’: "g’’1l6 b’’1l6 g’’1l6 d’"16 b’'8"},

'c8 d8 d,8", 't’: "e’’16 c’'’16 b’'l6 a’'l6 g’'l6e fs’'l6"},

e’’16 <b’ d’’'>16 <a’' c’’>16 <g’ b’'>16 <fs’ a’>1l6"},

<b’ d’’>16 (<a’ c’’'>16) <a’ c’'’>16 (<g’ b’'>16) "

>16 (<fs’ a’>16)"},

8’7, '"t’: "e’’16 g’’16 d'’16 c’’16 b’l6 a’le"},
8’7, 't’: "a’l6 e’’16 d’'16 g’'’1l6 fs’’16 a’'’l6"},
8’7, 't’: "e’’16 a’’l6 g’'’16 b’’16 fs’'’16 a’’l6"},

87, 't’: "c’’16 e’’16 g’’16 d’’16 a’l6 fs’’16"},
87, 't’: "e’’16 g’’16 d’’16 g'’16 a’l6 fs’’16"},
87, 't’: "e’’16 c’’16 b’16 g’16 a’l6 fs’16"},

87, 't’: "e’’16 c’’’16 b'’16 g’’16 a’’16 fs’’16"},

8", 't’: "a’8 d’'’16 c’'’16 b’l6 a’'le"},

"g,8 gl6 £16 el6 dl6’, 't’: "<g’ b’ d’’ g’’>4 r8"},
"g,8 bl6 gl6 £sl6 el6’, "t’: "<g’ b’ d’’ g’’>4 rg"},

"t’: "fs’’8 a’’l6 fs’'’1l6 d’'’1l6 fs’'’16"},
r8’, 't’: "d’’16 a’'lée d’’16 fs’’16 a’’l6 fs’’16"},

a>8 <d fs>8 <c d>8’, ’t’: "fs’’8 a’’8 fs’'’8"},

'b’: 'b,4 r8’,
"b’: 'g4 r8’,
{’b’: '<c
{’b’: "c4 r8’,
{’b’: '<e
{"b": '<e
{’b": ’"<e
{"b": '<c
{’b’: "c4 r8’,
778 Vgl
{’b": "<e
{’b’: '<e
{"b": '<e
{’b": ’"<e
{'b": "c4 r8’,
{'b": "c8
{'b": "c4 r8’,
{’b": "c8
{'b": "c4 r8’,
{’b’: 'c4 r8’,
{'b": ’<c
{"b’": "<c fs>8
{’b": "c8
{’b’: '<c
{!bl: I<C
{!bl:
7" g
{!bl:
{’b’:
{!bl:
{’b’":
e g
{'b": "b,4 r8’,
{'b": "<b, g>4
{'b’: "<b, g>4
{'b’: "<b, d>8
Itl:
o
{!bl:
{’b’: "c8 d8 d,8",
Itl: lla!16
{'b’: "c8 d8 d,8’,
Itl: ALl
"<gl b!
{’b’: "c8 d8 d,
{’b": "c8 d8 d,
{’b’: "c8 d8 d,
{’b": "c8 d8 d,
{’b’: "c8 d8 d,
{'b": "c8 d8 d,
{’b’: "c8 d8 d,
{’b": "c8 d8 d,
!bl:
"b’:
{’b’: "d4 c8’,
{'b’: "<d fs>4
{"b": '<d
{’b": ’<c

{('b’:

"d4

a>4 <c a>8’,
rt’: "fs’’16 a’’l6 d''’'16 a’'’l6 fs’’1l6 a’’l6"},

el ,

"t’: "d’1l6 fs’1l6 a’l6e d’'’1l6 fs’’16 a’'’l6"},

48

Chapter 9. Mozart: Musikalisches Wiirfelspiel

Abjad Documentation, Release 2.13

{"b’:

rd,16 d16 csl6 dl6 cl6 dle’,

'tr: "<a’ d’’ fs’’>8 fs’’4 ~\\trill"},

"arrg (f£s’’8

d’’8)"},

: "d’'’’8 a’’l6 fs’’16 d''16 a’'le"},
: "d’’16 a’le d’'’8 fs’'’8"},

"fs’’1l6 d’'’16 a’8 fs’'’8"},

"aIS dlIB fS”S"},

"g”g b’’16 g”16 d”8"},

rg gl8 grsn}’

"g”8 d’’16 b’1l6 9’8"},
llglll6 b’’16 d’''16 b’’16 gll8"},

: "g’’16 b’’16 g’’16 d’'16 b"16 g’le"},

B "g”l6 b’’16 g"8 dr’s"y},

e’’>8 <c’’ e’'’">8"}

"grr8 d’’4 ~\\trill"},

’

e’’>16"},

nerrg g”16 e’’16 c’'’8"},
"e’’16 c’’16 e'’16 g"l6 c’'’’"16 g”l6"},

rer . Mgrrg orrg g’8"},

"e’’8 c’’16 e’’16 g”16 c’’r16"},

(gll8 e’

e’’>8 <b’ d’’'>8 r
"d’”’16 b’1l6 g’8 r8"},

" e’’>8 <pb’ d’'’>

e’’16 c’’16 e’’8 g”8"},
"e’’16 c’’16 gIS e’’8"},
S

r8)"y,

8"),

16 <g’ b’>16 g’8"},

llgl!16 e’’16 d’’16 b’16 glgn},

"e’’16 c’’16 b'16 d’’16 g’'’8"},
"q4’716 b’’16 g”16 d’’"16 b’8"},

"4’716 b’16 g'8 gll8ll},

rg g’4"},

rtr. M"errg cr’rg 9’8"},
T, llgl8 c’’8 e’’8"},

"c’’16 b'16 c’’16 e’'16 g'l6 c’’16"},

llgll8 flll6 ell16 dl’l6 C,,16"},
"c’’16 g’l6 e’’16 c’'16 g''16 e’'’"16"},

c’’>8 <e’ c’’>8

rgr. o merrg gIS e”8"},

<e’ c’'’>8"},

{"b’: "<d fs>4 <c fs>8’, ’'t’:
{"b’: "<d fs>4 <c fs>8’, 't’
{"b’: "<d fs>4 r8’, "t’
{"b’: '<c a>4 <c a>8’, 't’:
{’b’: ’<d fs>4 <c a>8’, 't’:
]I
[
{’b’: '<b, g>4 r8’, 't’:
{"b’: "b,16 dl6 gl6 dl6 b,16 g,1l6’, 't’': "g’
{lbl: Ib,4 r8l, Itl: "gll16 bl!l6 glll6 bl!16 dll8"}’
{"b’: "<b, d>4 <b, d>8’,
Itl: llall16 glll6 blll6 g!ll6 dlll6 g!!16ll},
{'b’: "<b, d>4 <b, d>8’, ’'t’:
{"b’: "<b, d>4 <b, d>8’, ’'t’:
{"b’: "<b, d>4 r8", "t’
{"b’: "<b, d>4 <b, d>8’,
Itl: llgll16 dlll6 glll6 bl!l6 glll6 dl116ll),
{"b’: "<b, d>4 <b, g>8’, 't’
{"b’: "g,16 b,16 g8 b,8", "t’:
{!bl: Ib,4 r8!, It’: "g!!S b!ll6 d”!16 d!l8"},
1,
[
{"b’: "cl6 el6 gl6 el6 c’l6 cle",
Itl: ll<cll el!>8 <Cll
{"b’: "e4 el6 cle’,
't’: "c’’16 g'l6 c’'’16 e'’16 g'’1l6 <c'’
{’b’: "<c g>4 <c e>8’, 't’:
{"b’: "<c g>4 r8’, 't’:
{’b’: "<c g>4 <c g>8',
Itl: llel!l6 glll6 Cllll6 glll6 elll6 c!ll6"},
{"b’: "cl6 b,16 cl6 dl6 el6 fsle’,
Itl: ll<g! cri ell>8 6”4 A\\trill"},
{’b’: "<c e>16 gl6 <c e>16 gl6 <c e>1l6 gl6’,
{’b’: "<c g>4 <c e>8’, 't':
{"b’: "<c g>4 <c e>8", "t’r: "
{’b’: "<c g>4 <c g>8’, 't’:
{"b’: "<c g>4 <c e>8’, 't’: "e’'’8
]I
[
{lbl: Ig4 g’8l, Itl: "<Cll
{('b’: "<g, g>4 g8’, 't’:
{'b’: "g8 g,8 r8", 't’: "<c’
{"b’: "g4 r8", 't’: "e’’16 c’’16 d’'16 b’16 g’8"},
{"b’: "9g8 g,8 r8’, ’'t’:
{"b’: "g4 g,8", 't’: "b’1l6 d’'16 g’’'16 d’’16 b’'8"},
{"b": "g8 g,8 r8’, "'t’:
{’b’: '<g b>4 r8’, 't’:
{'b’: "<b, g>4 <b, d>8’, 't’:
{"b’: "gl6 fsl6 gl6 dl6 b,16 g,l6’, ’'t’: "d’
]I
[
{"b’: "<c e>16 gl6 <c e>16 gl6 <c e>16 gle’,
{’b’: "<c e>16 gl6 <c e>16 gl6 <c e>16 glé6’,
{’b’": "<c e>16 gl6 <c e>16 gl6 <c e>16 glé6’,
Itl: llgffs e,,8 cll8"},
{"b’: "<c e>4 <e g>8’, "t’:
{"b’: '<c e>4 <c g>8',
Itl: Ilclll16 blll6 Clll16 glll6 ell16 C,,l6"},
{’b’: '<c g>4 <c e>8',
Itl: llell16 dlll6 61116 g!ll6 CIIIlG g!ll6"},
{'b’: '<c e>4 r8", "t’:
{'b": "<c e>4 r8’, "t’:
{’b’: "<c e>16 gl6 <c e>16 gl6 <c e>16 glé6’,
{’b’: "<c e>16 gl6 <c e>16 gl6 <c e>16 gl6’,
rer . "g”S c’’8 e”8"},
{'b": "c8 c8 c8", '"t’: "<e’
I
[

{'b’:
rtr: "e’’g8 (c’'’8 g’8
{"b":

'<c e>4 <c g>8’,

e

ng18

(

'<c e>16 gl6 <c e>16 gl6 <c e>16 gle’,
)"},

c’’8 e’’8

)"}I

9.1. The materials

49

Abjad Documentation, Release 2.13

{’b’: '<c e>16 gl6 <c e>16 gl6 <c e>16 glé6’,

!tl: llg/!8 e!!g C,IS"},
{’b’: "<c e>4 <c e>8’, ’'t’: "c’’16 b’1l6 c’’16 e’'’16 g’l6 c’’16"},
{'b’: "<c e>4 r8’, 't’': "c’'’’16 b’'’16 c’'’’16 g’'’1l6 e’'’16 c’'’16"},
{"b’: "<c g>4 <c e>8’,

rtr: "e’’16 d’716 e’’16 g’’16 c’’’16 g’’1l6e"},
{’b’: "<c e>4 <e g>8’, ’'t’: "g’’8 f'’16 e’’16 d’'"16 c’'’16"},
{"b’: "<c e>4 r8’, "t’: "c’’16 g’'l6 e’’16 c’'’16 g'’1l6 e’'’16"},
{’b’: "<c e>16 gl6 <c e>16 gl6 <c e>16 gl6’, 't’: "c’'’8 g’'8 e’'’8"},
{’b’: "<c e>16 gl6 <c e>16 gl6 <c e>16 gl6’,

Itl: llg!!8 0778 el/8"},
{"b": "c8 c8 c8’, "t’: "<e’ c’'’>8 <e’ c’'’'>8 <e’ c’'’'>8"},

{"b": "<f a>4 <g d">8", 't’: "d’"16 f£''16 d'’16 £'’16 b’1l6 d'’1le"},
{"b’: "£f4 g8", 't’: "d’’16 £''16 a’’1l6 f£f'716 d'’16 b’'1l6"},
{"b": 7£f4 g8’, 't’: "d’’16 £’'16 a’le d’'16 b’le d’’'16"},
{"b”: "£f4 g8", 't’: "d’’16 (cs’’16) d’'16 f£''16 g’'1l6 b’1le"},
{'b’: ’'£8 d8 98’, rer. mErrg 4rrg gllgn}’
{"b’: "f16 el6 dl6 el6 fl6 glé6’,
"t’: "fr’16 e’’16 d''16 e’’16 £'716 g’’1l6"},
{"b”: "£f16 el6 d8 g8’, 't’: "f’’1l6 e’’16 d’'8 g’’8"},

{"b’: "£4 g8’, “t’: "£/716 e’’16 d’’16 c’’16 b'16 d’’16"},
{"b’: "£4 g8’, 't’: "£'716 d’'16 a’8 b’8"},
{"b’: "£4 g8’, t’: "£/716 a’’16 a’8 b’16 d’’16"},

{"b’: "f4 g8", 't’: "a’8 f’’16 d'’16 a’'l6 b’1l6"},

(s e Tl)l @yl TiEfa Wel T4l eEi)
{'b’: 'cd c,8', 't’: "c’’8 c’8 r8"},

We can then use the p () function we saw earlier to “build” the treble and bass components of a measure like this:

def make_mozart_measure (measure_dict) :
parse the contents of a measure definition dictionary
wrap the expression to be parsed inside a LilyPond { } block
treble = p(’{{ {} }}’.format (measure_dict([’'t’]))
bass = p(’{{ {} }}’.format (measure_dict[’'b’1))
return treble, bass

Let’s try with a measure-definition of our own:

>>> my_measure_dict = {'b’: r’cd "\trill r8’, 't’: "e’’8 (c’'’8 g’'8)"}
>>> treble, bass = make_mozart_measure (my_measure_dict)

>>> f (treble)
{
e’’§ (
c’’8
g’'8)

>>> f (bass)

cd "\trill
r8

Now with one from the Mozart measure collection defined earlier. We’ll grab the very last choice for the very last
measure:

>>> my_measure_dict = make_mozart_measure_corpus () [-1][-1]
>>> treble, bass = make_mozart_measure (my_measure_dict)

>>> f (treble)
{

c’’8

c’8

50 Chapter 9. Mozart: Musikalisches Wiirfelspiel

Abjad Documentation, Release 2.13

r8

>>> f (bass)

c4
€, 8

9.2 The structure

After storing all of the musical fragments into a corpus, concatenating those elements into a musical structure
is relatively trivial. We’ll use the choice () function from Python’s random module. random.choice ()
randomly selects one element from an input list.

>>> import random

>>> my_list = [1, 'b’, 3]

>>> my_result = [random.choice(my_list) for i in range (20)

>>> my_result

[3, 3, 'o’, 1, '"b’, ’'b’, 3, 1, 'b’", 'b’, 3, 'b’, 1, 3, 'b’, 1, 3, 3, 3, 3]

Our corpus is a list comprising sixteen sublists, one for each measure in the minuet. To build our musical structure,
we can simply iterate through the corpus and call choice on each sublist, appending the chosen results to another
list. The only catch is that the eighth measure of our minuet is actually the first-and-second-ending for the repeat
of the first phrase. The sublist of the corpus for measure eight contains only the first and second ending definitions,
and both of those measures should appear in the final piece, always in the same order. We’ll have to intercept that
sublist while we iterate through the corpus and apply some different logic.

The easist way to intercept measure eight is to use the Python builtin enumerate, which allows you to iterate
through a collection while also getting the index of each element in that collection:

def choose_mozart_measures () :
measure_corpus = make_mozart_measure_corpus ()
chosen_measures = []
for i, choices in enumerate (measure_corpus) :
if 1 == 7: # get both alternative endings for mm. 8
chosen_measures.extend(choices)
else:
choice = random.choice (choices)
chosen_measures.append (choice)
return chosen_measures

Note: In choose_mozart_measures we test for index 7, rather then 8, because list indices count from O instead of
1.

The result will be a seventeen-item-long list of measure definitions:
>>> choices = choose_mozart_measures ()
>>> for i1, measure in enumerate (choices) :

print i, measure

{"b": "<c e>4 r8’, ’'t’: "c’'’16 b'16 c’'’16 e'’16 g'l6 c'’1l6"}

0

1 {’b’: '<c e>4 r8’, 't’: "c’’8 g'8 e’’8"}

2 {('b’: 'b,4 r8’, 't’: "d’’8 (b’'8 g’8)"}

3 {'b’: '<e g>4 r8’, 't’: "c’’8 e’’16 c’’16 g’ 8"}

4 {('b’: 'c4 r8’, 't’: "d’’16 cs’’16 d’’16 £s'’16 a’’1l6 fs’’16")
5 {’b’: '<b, d>4 r8’, ‘t’: "g’’8 b’’16 g’’16 d’’16 b’ 16"}

6 {'b’: 'c8 d8 d,8’, 't’: "a’l6 e’’16 d’’16 g’’16 £fs'’16 a’’16"}
7 {'b’: 'qg,8 gl6 £16 el6 dl6’, 't’: "<g’ b’ d’’ g’’>4 r8"}

8 {’b’: 'q,8 bl6 gl6 £sl6 el6’, 't’: "<g’ b’ d’’ g’’>4 r8"}

9 {’b’: ’<d fs>4 <c £s>8’, 't’: "a’’8 (fs’’8 d'’8)"}

10 {Ibl: lb,4 r8l, Itl: "g778 blll6 d77716 dIISIl}

11 {’b’: '<c g>4 <c e>8’, ’t’: "e’’8 (g’’8 c’’’8)"}

12 {’b’: 'g8 g,8 r8’, 't’: "g’’16 e’’16 d’’16 b’16 g’8"}

9.2. The structure 51

http://docs.python.org/2.7/library/random.html#random.choice
http://docs.python.org/2.7/library/random.html#random.choice

Abjad Documentation, Release 2.13

13 {'b’: "<c e>16 gl6 <c e>16 gl6 <c e>16 gle6’, "t’: "g’’8 c’'’8 e'’'8"}
14 {'b’": "<c e>16 gl6 <c e>16 gl6 <c e>16 gle’, "t’: "g’’8 e’'’8 c’'’8"}
15 {'b": 'f4 g8’, ’'t’: "f’’16 d’'’16 a’'8 b’8"}

16 {'b": 'c4 c¢,8", "t’: "c’’8 c’8 r8"}

9.3 The score

Now that we have our raw materials, and a way to organize them, we can start building our score. The tricky
part here is figuring out how to implement LilyPond’s repeat structure in Abjad. LilyPond structures its repeats
something like this:

\repeat volta n {
music to be repeated

\alternative {
{ ending 1 }
{ ending 2 }
{ ending n }

...music after the repeat...

What you see above is really just two containers, each with a little text (“repeat volta n” and “alterna-
tive”) prepended to their opening curly brace. To create that structure in Abjad, we’ll need to use the
LilyPondCommandMark class, which allows you to place LilyPond commands like “break™ relative to any
score component:

>>> container = Container("c’4 d’4 e’4 fr4an

>>> mark = marktools.LilyPondCommandMark (

.. "before-the-container’, ’before’) (container)

>>> mark = marktools.LilyPondCommandMark (

L. "after-the-container’, ’"after’) (container)

>>> mark = marktools.LilyPondCommandMark (

. "opening-of-the-container’, ’opening’) (container)

>>> mark = marktools.LilyPondCommandMark (

L. "closing-of-the-container’, ’closing’) (container)

>>> mark = marktools.LilyPondCommandMark (
"to-the-right-of-a-note’, ’'right’) (container([2])

>>> f (container)
\before-the-container
{
\opening-of-the-container
c’4
d’4
e’4 \to-the-right-of-a-note
fr4
\closing-of-the-container

}

\after-the-container

Notice the second argument to each LilyPondCommandMark above, like before and closing. These are format
slot indications, which control where the command is placed in the LilyPond code relative to the score element it
is attached to. To mimic LilyPond’s repeat syntax, we’ll have to create two LilyPondCommandMark instances,
both using the “before” format slot, insuring that their command is placed before their container’s opening curly
brace.

Now let’s take a look at the code that puts our score together:
def make_mozart_score() :

score_template = scoretemplatetools.TwoStaffPianoScoreTemplate ()
score = score_template ()

select the measures to use

52 Chapter 9. Mozart: Musikalisches Wiirfelspiel

Abjad Documentation, Release 2.13

choices = choose_mozart_measures ()

create and populate the volta containers

treble_volta = Container ()

bass_volta = Container ()

for choice in choices[:7]:
treble, bass = make_mozart_measure (choice)
treble_volta.append(treble)
bass_volta.append (bass)

add marks to the volta containers
marktools.LilyPondCommandMark (
"repeat volta 2’, ’'before’
) (treble_volta)
marktools.LilyPondCommandMark (
"repeat volta 2’, ’before’
) (bass_volta)

add the volta containers to our staves
score[’RH Voice’] .append(treble_volta)
score[’LH Voice’] .append(bass_volta)

create and populate the alternative ending containers

treble_alternative = Container ()

bass_alternative = Container ()

for choice in choices[7:9]:
treble, bass = make_mozart_measure (choice)
treble_alternative.append (treble)
bass_alternative.append (bass)

add marks to the alternative containers
marktools.LilyPondCommandMark (
"alternative’, ’'before’
) (treble_alternative)
marktools.LilyPondCommandMark (
"alternative’, ’'before’
) (bass_alternative)

add the alternative containers to our staves
score[’RH Voice’].append(treble_alternative)
score[’LH Voice’] .append(bass_alternative)

create the remaining measures

for choice in choices[9:]:
treble, bass = make_mozart_measure (choice)
score[’RH Voice’] .append(treble)
score[’LH Voice’] .append (bass)

add marks

contexttools.TimeSignatureMark ((3, 8)) (score[’RH Staff’])
marktools.BarLine ('’ |.’) (score[’RH Voice’][-1])
marktools.BarLine(’ |.’) (score[’LH Voice’][-11])

remove the old, default piano instrument attached to the piano staff
and add a custom instrument mark
for mark in inspect (score[’Piano Staff’]) .get_marks(
instrumenttools.Instrument) :
mark.detach ()

klavier = instrumenttools.Piano (
instrument_name=’Katzenklavier’,
short_instrument_name="kk.’,
target_context = scoretools.PianoStaff,
)

klavier.attach (score[’Piano Staff’])

return score

>>> score = make_mozart_score ()
>>> show (score)

9.3. The score 53

Abjad Documentation, Release 2.13

[T
T
BL]
BL }

b
b

Ll
=
e

Piano

an
B .|
]
| T
T
e
T
E
1
-n-“

I I E—
) phesf L refi el " 4 efof
F a0 1 r Il | Lial | i ’ i = r
P % |
—1 i 1 :J J ; ?
i e —— L . ¥
» ¥
12 s P P
[. . o —
3 =E4 — .
Pf,
|
-) - . i :
=p ; S s B EF— 5| Pt

o

Note: Our instrument name got cut off! Looks like we need to do a little formatting. Keep reading...

9.4 The document

As you can see above, we’ve now got our randomized minuet. However, we can still go a bit further. Lily-
Pond provides a wide variety of settings for controlling the overall look of a musical document, often through its
header, layout and paper blocks. Abjad, in turn, gives us object-oriented access to these settings through the its
lilypondfiletools module.

We’ll use abjad.tools.lilypondfiletools.make_basic_lilypond_file() to wrap our
Score inside a LilyPondFile instance. From there we can access the other “blocks” of our document to
add a title, a composer’s name, change the global staff size, paper size, staff spacing and so forth.

def make_mozart_lilypond_file():
score = make_mozart_score ()
lily = lilypondfiletools.make_basic_lilypond_file(score)
title = markuptools.Markup (r’\bold \sans "Ein Musikalisches Wuerfelspiel"’)
composer = schemetools.Scheme ("W. A. Mozart (maybe?)")
lily.global_staff_size = 12
lily.header_block.title = title
lily.header_block.composer = composer
lily.layout_block.ragged_right = True
lily.paper_block.markup_system_spacing basic_distance = 8
lily.paper_block.paper_width = 180
return lily

>>> lilypond_file = make_mozart_lilypond_file ()
>>> print lilypond_file
LilyPondFile (Score-"Two-Staff Piano Score"<<1>>)

>>> print lilypond_file.header_block
HeaderBlock (2)

>>> f(lilypond_file.header_block)

\header {
composer = #"W. A. Mozart (maybe?)"
title = \markup {
\bold

\sans
"Ein Musikalisches Wuerfelspiel"

54 Chapter 9. Mozart: Musikalisches Wiirfelspiel

Abjad Documentation, Release 2.13

>>> print lilypond_file.layout_block
LayoutBlock (1)

>>> f(lilypond_file.layout_block)
\layout {

ragged-right = ##t
}

>>> print lilypond_file.paper_block
PaperBlock (2)

>>> f(lilypond_file.paper_block)

\paper {
markup-system-spacing #’basic-distance = #8
paper-width = #180

And now the final result:

>>> show(lilypond_file)

Ein Musikalisches Wuerfelspiel
W. A, Moeart (maybe?)

Ba s s L
ﬁ%ﬂ;ﬂ BRI NSRS T T =
el —— = ————m <

Pinno »j \ \
[EEr e e et
== ——— i f =
{:Et Pie p_afa _ TS P SN e e I S
Pr'% S P e S]
"{"w RN — . . . - e —
Slisi S I i e R IEES It

9.4. The document 55

Abjad Documentation, Release 2.13

56 Chapter 9. Mozart: Musikalisches Wiirfelspiel

CHAPTER
TEN

PART: CANTUS IN MEMORY OF
BENJAMIN BRITTEN

Note: Explore the abjad/demos/part/ directory for the complete code to this example, or import it into your
Python session directly with:

* from abjad.demos import part

Let’s make some imports:

>>> import copy
>>> from abjad import x

def make_part_lilypond_file():

score_template = PartCantusScoreTemplate ()
score = score_template ()

add_bell music_to_score (score)
add_string _music_to_score (score)

apply_bowing_marks (score)
apply_dynamic_marks (score)
apply_expressive_marks (score)
apply_page_breaks (score)
apply_rehearsal_marks (score)
apply_final bar_lines (score)

configure_score (score)
lilypond_file = lilypondfiletools.make_basic_lilypond_file (score)
configure_lilypond_file (lilypond_file)

return lilypond_file

10.1 The score template

class PartCantusScoreTemplate (abctools.AbjadObject) :

SP
def _ _call__ (self):

make bell voice and staff

bell_voice = voicetools.Voice (name='Bell Voice’)

bell_staff = stafftools.Staff ([bell_voice], name=’'Bell Staff’)
contexttools.ClefMark ("treble’) (bell_staff)

bells = instrumenttools.Instrument (' Campana in La’, ’'Camp.’)
bells.attach(bell_staff)
contexttools.TempoMark ((1, 4), (112, 120)) (bell_staff)

57

Abjad Documentation, Release 2.13

contexttools.TimeSignatureMark ((6, 4)) (bell_staff)

make first violin voice and staff
first_violin_voice = voicetools.Voice (name='First Violin Voice’)
first_violin_staff = stafftools.Staff([first_violin_voice],
name='First Violin Staff’)
contexttools.ClefMark ('treble’) (first_violin_staff)
instrumenttools.Violin (
instrument_name_markup=’'Violin I’,
short_instrument_name_markup='V1l. I’
) (first_violin_staff)

make second violin voice and staff
second_violin_voice = voicetools.Voice (name=’'Second Violin Voice’)
second_violin_staff = stafftools.Staff ([second_violin_voice],
name=’'Second Violin Staff’)
contexttools.ClefMark ('treble’) (second_violin_staff)
instrumenttools.Violin(
instrument_name_markup='Violin II’,
short_instrument_name_markup='Vl. II'
) (second_violin_staff)

make viola voice and staff

viola_voice = voicetools.Voice (name=’'Viola Voice’)

viola_staff = stafftools.Staff([viola_voice], name='Viola Staff’)
contexttools.ClefMark (“alto’) (viola_staff)
instrumenttools.Viola () (viola_staff)

make cello voice and staff
cello_voice = voicetools.Voice (name=’'Cello Voice’)
cello_staff = stafftools.Staff([cello_voice], name=’'Cello Staff’)
contexttools.ClefMark (' bass’) (cello_staff)
instrumenttools.Cello (
short_instrument_name_markup='Vc.’
) (cello_staff)

make bass voice and staff
bass_voice = voicetools.Voice (name=’'Bass Voice’)
bass_staff = stafftools.Staff ([bass_voice], name=’'Bass Staff’
contexttools.ClefMark ("bass’) (bass_staff)
instrumenttools.Contrabass (
short_instrument_name_markup=’'Cb.’
) (bass_staff)

make strings staff group
strings_staff_group = scoretools.StaffGroup ([

first_violin_staff,

second_violin_staff,

viola_staff,

cello_staff,

bass_staff,

]I

name='Strings Staff Group’,

)

make score

score = scoretools.Score ([
bell_staff,
strings_staff_group,
]I
name='Pdrt Cantus Score’

)

return Pdrt Cantus score
return score

58 Chapter 10. Part: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.13

10.2 The bell music

def add _bell music_to_score(score):
bell_voice = score[’Bell Voice’]

def make_bell phrase() :

phrase = []

for _ in range(3):
phrase.append (measuretools.Measure ((6, 4), r"r2. a’2. \laissezVibrer")
phrase.append (measuretools.Measure ((6, 4), "R1.7))

for _ in range(2):
phrase.append (measuretools.Measure ((6, 4), "R1.7))

return phrase

for _ in range(11l):
bell_voice.extend (make_bell _phrase())

for _ in range(19):
bell voice.append(measuretools.Measure((6, 4), 'R1.7))

bell voice.append (measuretools.Measure((6,4), r"a’l. \laissezVibrer"))

10.3 The string music

Creating the music for the strings is a bit more involved, but conceptually falls into two steps. First, we’ll proce-
durally generate basic pitches and rhythms for all string voices. Then, we’ll make edits to the generated material
by hand. The entire process is encapsulated in the following function:

def add_string music_to_score (score) :

generate some pitch and rhythm information

pitch_contour_reservoir = create_pitch_contour_reservoir ()

shadowed_contour_reservoir = shadow_pitch_contour_reservoir (
pitch_contour_reservoir)

durated_reservoir = durate_pitch_contour_reservoir (
shadowed_contour_reservoir)

add six dotted-whole notes and the durated contours to each string voice
for instrument_name, descents in durated_reservoir.iteritems () :
instrument_voice = scorel[’ Voice’ % instrument_name]
instrument_voice.extend("R1. R1. R1. R1. R1. R1.")
for descent in descents:
instrument_voice.extend (descent)

apply instrument-specific edits
edit_first_violin_voice (score, durated_reservoir)
edit_second_violin_voice (score, durated_reservoir)
edit_viola_voice (score, durated_reservoir)
edit_cello_voice (score, durated_reservoir)
edit_bass_voice (score, durated_reservoir)

chop all string parts into 6/4 measures

strings_staff_group = score[’Strings Staff Group’]
for voice in iterationtools.iterate_voices_in_expr (strings_staff_group) :
shards = mutate (voice[:]) .split ([(6, 4)], cyclic=True)
for shard in shards:
measuretools.Measure ((6, 4), shard)

The pitch material is the same for all of the strings: a descending a-minor scale, generally decorated with diads.
But, each instrument uses a different overall range, with the lower instrument playing slower and slower than the
higher instruments, creating a sort of mensuration canon.

For each instrument, the descending scale is fragmented into what we’ll call “descents”. The first descent uses
only the first note of that instrument’s scale, while the second descent adds the second note, and the third another.
We’ll generate as many descents per instruments as there are pitches in its overall scale:

10.2. The bell music 59

Abjad Documentation, Release 2.13

def create_pitch_contour_reservoir():

scale = tonalanalysistools.Scale(’a’, ’'minor’)

pitch_ranges = {
"First Violin’: pitchtools.PitchRange(("c’", "a’’’"")),
"Second Violin’: pitchtools.PitchRange((’a’, "a’’")),

"Viola’: pitchtools.PitchRange((’'e’, "a’'")),
"Cello’: pitchtools.PitchRange((’a,’, 'a’)),
"Bass’: pitchtools.PitchRange(('c’, "a’)),

reservoir = {}

for instrument_name, pitch_range in pitch_ranges.iteritems () :
pitch_set = scale.create_named_pitch_set_in_pitch_range (pitch_range)
pitches = sorted(pitch_set, reverse=True)

pitch_descents = []
for i in xrange (len(pitches)):

descent = tuple(pitches[:i + 1]
pitch_descents.append (descent)
reservoir[instrument_name] = tuple (pitch_descents)

return reservoir

Here’s what the first 10 descents for the first violin look like:

>>> reservoir = create_pitch_contour_reservoir ()

>>> for i in range(10):
descent = reservoir[’/First Violin’][i]
print ’ ’.join(str(x) for x in descent)

a!l‘l

ar’’r g’

alll glll f!!!

arrr o grrr o frrroerty

alll gl!! f!!! elll d!!!

ar’r o grrr o frrroerrr o grrr o crrd

all’ g”! f!!! el” dl!! c!!l bl’

a!ll glll fl!! elll dlll C!!! bll all

LA LAAANS LA LAA AN AN M o LA ANE-LAANNe L

a!ll glll f!!! eIII dll! c!!l bII all g!! fII

Next we add diads to all of the descents, except for the viola’s. We’ll use a dictionary as a lookup table, to tell us
what interval to add below a given pitch class:

def shadow_pitch_contour_reservoir (pitch_contour_reservoir) :

shadow_pitch_lookup = {

pitchtools.NamedPitchClass(’a’): -5, # add a P4 below
pitchtools.NamedPitchClass('g’): -3, # add a m3 below
pitchtools.NamedPitchClass('f’): -1, # add a m2 below
pitchtools.NamedPitchClass('e’): -4, # add a M3 below
pitchtools.NamedPitchClass ('d’): -2, # add a M2 below
pitchtools.NamedPitchClass(’'c’): -3, # add a m3 below
pitchtools.NamedPitchClass ('b’): -2, # add a M2 below

}

shadowed_reservoir = {}

for instrument_name, pitch_contours in pitch_contour_reservoir.iteritems() :
The viola does not receive any diads

if instrument_name == ’'Viola’:
shadowed_reservoir[’Viola’] = pitch_contours
continue

shadowed_pitch_contours = []

for pitch_contour in pitch_contours[:-1]:
shadowed_pitch_contour = []
for pitch in pitch_contour:
pitch_class = pitch.named_pitch_class
shadow_pitch = pitch + shadow_pitch_lookup[pitch_class]
diad = (shadow_pitch, pitch)

60 Chapter 10. Part: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.13

shadowed_pitch_contour.append(diad)
shadowed_pitch_contours.append(tuple (shadowed_pitch_contour))

treat the final contour differently: the last note does not become a diad
final_shadowed_pitch_contour = []
for pitch in pitch_contours([-1][:-1]:

pitch_class = pitch.named_pitch_class

shadow_pitch = pitch + shadow_pitch_lookup[pitch_class]

diad = (shadow_pitch, pitch)

final_shadowed_pitch_contour.append (diad)
final_shadowed_pitch_contour.append(pitch_contours[-1][-1]
shadowed_pitch_contours.append (tuple (final_shadowed_pitch_contour))

shadowed_reservoir[instrument_name] = tuple (shadowed_pitch_contours)

return shadowed_reservoir

Finally, we’ll add rhythms to the pitch contours we’ve been constructing. Each string instrument plays twice as
slow as the string instrument above it in the score. Additionally, all the strings start with some rests, and use a
“long-short” pattern for their rhythms:

def durate_pitch_contour_reservoir (pitch_contour_reservoir) :

instrument_names = [
"First Violin’,
’Second Violin’,
'Viola’,
"Cello’,
’Bass’,

]

durated_reservoir

= {}

for i, instrument_name in enumerate (instrument_names) :
long_duration Duration(l, 2) * pow(2, i)
short_duration = long_duration / 2
rest_duration long_duration % Multiplier (3, 2)

div = rest_duration // Duration(3, 2)

o

mod = rest_duration % Duration (3, 2)

initial_rest = resttools.MultimeasureRest ((3, 2)) = div
if mod:
initial_rest += resttools.make_rests (mod)

durated_contours = [tuple(initial_rest)]
pitch_contours = pitch_contour_reservoir[instrument_name]
durations = [long_duration, short_duration]
counter = 0
for pitch_contour in pitch_contours:
contour = []

for pitch in pitch_contour:
contour.extend (leaftools.make_leaves ([pitch], [durations[counter]]))

[

counter = (counter + 1) % 2
durated_contours.append (tuple (contour))

durated_reservoir[instrument_name] = tuple (durated_contours)

return durated_reservoir

Let’s see what a few of those look like. First, we’ll build the entire reservoir from scratch, so you can see the
process:

>>> pitch_contour_reservoir = create_pitch_contour_reservoir ()
>>> shadowed_contour_reservoir = shadow_pitch_contour_reservoir (pitch_contour_reservoir)
>>> durated_reservoir durate_pitch_contour_reservoir (shadowed_contour_reservoir)

Then we’ll grab the sub-reservoir for the first violins, taking the first ten descents (which includes the silences
we’ve been adding as well). We’ll label each descent with some markup, to distinguish them, throw them into a
Staff and give them a 6/4 time signature, just so they line up properly.

10.3. The string music 61

Abjad Documentation, Release 2.13

>>> descents
>>> for i,
markup markuptools.Markup (
r’ \rounded-box \bold {}’
Up,
)
markup.attach (descent [0])

’

Markup ((MarkupCommand (’ rounded-box’
Markup ((MarkupCommand (’ rounded-box’ ,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,

>>> staff
>>> time_signature
>>> show (staff)

e 6
z £

descent in enumerate (descents([l:],

contexttools.TimeSignatureMark ((6,

durated_reservoir[’First Violin’][:10]

1) 3

.format (i),

Staff (sequencetools.flatten_sequence (descents))

MarkupCommand ("bold’, "1’)),), direction=Up) (e’’’ a’’’>2)
MarkupCommand (" bold’, "2’)),), direction=Up) (e’’’ a’’’>4)
MarkupCommand (’bold’, ’3’)),), direction=Up) (<e’’’ a’’’>4)
MarkupCommand ("bold’, "4’)),), direction=Up) (e’’’ a’'’’>2)
MarkupCommand (’bold’, ’5’)),), direction=Up) (<e’’’ a’’’>2)
MarkupCommand (’bold’, ’'6’)),), direction=Up) (<e’’’ a’’’'>4)
MarkupCommand (" bold’, ’"7’)),), direction=Up) (<e’’’ a’’’>4)
MarkupCommand (’bold’, "87)),), direction=Up) (<e’’’ a’’’>2)
MarkupCommand (’bold’, "9")),), direction=Up) (<e’’’ a’’’>2)
4)) (staff)

(4]

e (<)

3
= Eee & B b =1 E s
ﬂ FiLd : :I: :::::I: FI FI# :::::Ig#ll# |
@—a: Y — i | — — — |
9]
E oo 5 B = o E 8 o2 -
! ﬁ = :::¥E !_-|?& ‘f-:: = F:: ?Eﬁ- 1‘ ﬁfz .=':: = E:: ?EﬁL- FtlﬁfL :E:&:::
UIJ' | 1 1 | 1 1 1
Let’s look at the second violins too:
>>> descents = durated_reservoir[’Second Violin’][:10]

>>> for i,
markup markuptools.Markup (
r’ \rounded-box \bold {}’
Up,
)
markup.attach (descent [0])

Markup ((MarkupCommand (’ rounded-box’
Markup ((MarkupCommand (’ rounded-box’ ,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,
Markup ((MarkupCommand (’ rounded-box’,

’

>>> staff
>>> time_signature
>>> show (staff)

descent in enumerate (descents([l:],

contexttools.TimeSignatureMark ((6,

1) 3

.format (i),

Staff (sequencetools.flatten_sequence (descents))

MarkupCommand (’bold’, "1’)),), direction=Up) (<e’’ a’’>1)
MarkupCommand (’bold’, "2’)),), direction=Up) (<e’’ a’’>2)
MarkupCommand ("bold’, "3’)),), direction=Up) (<e’’ a’’>2)
MarkupCommand (’bold’, "4’)),), direction=Up) (<e’’ a’’>1)
MarkupCommand (' bold’, ’5’)),), direction=Up) (<e’’ a’’>1)
MarkupCommand (’bold’, '6’)),), direction=Up) (<e’’ a’’>2)
MarkupCommand (' bold’, "7’)),), direction=Up) (<e’’ a’’>2)
MarkupCommand (’bold’, ’8’)),), direction=Up) (<e’’ a’’>1)
MarkupCommand (' bold’, "9’)),), direction=Up) (<e’’ a’’>1)
4)) (staff)

62

Chapter 10. Péart: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.13

v (29)
% (eo)
g5 (=)

=

f Fa o B 2 . 2 .
o ri] | 4% | %] . ol || ” [y -~ I &]) | el 1 1
Fal L] - | 1 I | 1 I) I 1 1 1
N5 | 1 | | 1 L L 1 1
AN P 3 | 1 1 | | | I I | | | |
[}
9
A = Py _ = . | - -
A" 4 = 1 [] F [&) 5 I 1 I %] [[] - 1 | | %] ” 1
F.E S el 1 I | &] . 1Ly 1 | |] [1) | P | 1
| Fant 1 1 1 1 14 1 | [1 1 4% Il | 1
ey 1 1 1 1 1 1 | L 1 1 I 1
¢ 1 I
17
i - =
W OLrr i | e 1 L4}) | el 7 l e 1 1
Fal] 1L [#) | P | | ”l | L 1 P 1
| FanY 1 |) | S [| | 1 |.#) LAY [+ 1 e
Sl 1 | 1 o 1 1 1 | 1 ol 1 5
o | |

And, last we’ll take a peek at the violas. They have some longer notes, so we’ll split their music cyclically every

3 half notes, just so nothing crosses the bar lines accidentally:

>>> descents durated_reservoir[’Viola’][:10]
>>> for i, descent in enumerate (descents[l:],
markup markuptools.Markup (
r’ \rounded-box \bold {}’
Up,
)
markup.attach (descent [0])

1):

.format (i),

Markup ((MarkupCommand (' rounded-box’, MarkupCommand (’bold’, "17)),), direction=Up)(a \breve)
Markup ((MarkupCommand (’ rounded-box’, MarkupCommand (’bold’, "2’)),), direction=Up) (a
Markup ((MarkupCommand (’ rounded-box’, MarkupCommand (’bold’, ’"3")),), direction=Up) (a)
Markup ((MarkupCommand (’ rounded-box’, MarkupCommand ('bold’, ’4’)),), direction=Up) (a’\breve)
Markup ((MarkupCommand (’ rounded-box’, MarkupCommand(’bold’, ’"5")),), direction:Up)(a \breve)
Markup ((MarkupCommand (’ rounded-box’, MarkupCommand ('bold’, ’6’)),), direction=Up) (a’l)
Markup ((MarkupCommand (’ rounded-box’, MarkupCommand (’bold’, ’7")),), direction=Up) (a’l)
Markup ((MarkupCommand (' rounded-box’, MarkupCommand (’bold’, ’'8’)),), direction=Up) (a’\breve)
Markup ((MarkupCommand (’ rounded-box’, MarkupCommand (‘bold’, "9’)),), direction=Up) (a’\breve)
>>> staff = Staff (sequencetools.flatten_sequence (descents))
>>> shards = mutate(staff[:]).split ([(3, 2)]1, cyclic=True)
>>> time_signature = contexttools.TimeSignatureMark ((6, 4)) (staff)
>>> show (staff)
R @ 3) 4
) —) T | T—1 T i | i T]
.-] — I -— | T—1 I T | T I |
s —r i [& X3 7= — % = P] —a= = ¥ |
ATV 3 I | = —<* L —<* LS &] I 1
e/
10 A | @ | @
" 4 T T T T T—1 T T | | |
4l | | | | 1l | I L | | | | l |
| Fant [= | | | | [& X | .. I L | | | l ir |
A% P4 — 1 L & X1 L £ | . — L L & X L e 1 1 1]
£y, €©» - r: R~y
i
" 4 | T - | | T | T — |
7 | T T—1 | — I | 1 T—1 |
™ = T T—1 | ¥ | = 1 T—1 |
e —] e T=f 1 T —* L—.] e T = 1
e/ — LS] - ? — OF
29 A i
" 4 T T —1 T T T T T | |
r i — I 1 T 1 T T 1 | |
[an T— - . X | O E—— T] T T 1 T |
;f - Iﬁi I - s —¥s ./ E—— | m— — 1 1 1
= F o 7 e o T =
39 A [j i
" 4 T—1 T T—T | | T T | |
Fai T—1 I T—1 1 T—1 I 1 | |
a0 T & X T r= | T—1 1 T—1 1 T | |
EJIJ' - — | & I | > 1 o> I.'_'JI — 1 '_dl_ | | 1
— ¥ - = =1
— - TF. i’

You can see how each part is twice as slow as the previous, and starts a little bit later too.

10.3. The string music

63

Abjad Documentation, Release 2.13

10.4 The edits

def edit_first_violin_voice (score, durated_reservoir):

voice = score[’First Violin Voice’]

descents = durated_reservoir[’First Violin’]

descents = selectiontools.ContiguousSelection (descents)
last_descent = selectiontools.select (descents[-1], contiguous=True)

copied_descent = mutate (last_descent) .copy ()
voice.extend (copied_descent)

final_sustain_rhythm = [(6, 4)] * 43 + [(1, 2)]

final_sustain_notes = notetools.make_notes(["c’"], final_sustain_rhythm)
voice.extend (final_sustain_notes)

spannertools.TieSpanner (final_sustain_notes)

voice.extend ('rd4d r2.")

def edit_second_violin_voice (score, durated_reservoir) :

voice = score[’Second Violin Voice’]
descents = durated_reservoir[’Second Violin’]

last_descent = selectiontools.select (descents[-1], contiguous=True)
copied_descent = mutate (last_descent) .copy ()
copied_descent = list (copied_descent)
copied_descent[-1].written_duration = durationtools.Duration(1l, 1)
copied_descent.append (notetools.Note("a2’))
for leaf in copied_descent:
marktools.Articulation (’accent’) (leaf)
marktools.Articulation(’tenuto’) (leaf)
voice.extend (copied_descent)

final_sustain = []
for _ in range(32):

final_sustain.append (notetools.Note(’al.’))
final_sustain.append (notetools.Note(’a2’))
marktools.Articulation (’accent’) (final_sustain[0]

marktools.Articulation (’tenuto’) (final_sustain[0]
voice.extend (final_sustain)

spannertools.TieSpanner (final_sustain)
voice.extend('r4d r2.")

def edit_viola_voice(score, durated_reservoir):

voice = score[’Viola Voice’]
descents = durated_reservoir[’Viola’]

for leaf in descents[-1]:

marktools.Articulation(’accent’) (leaf)
marktools.Articulation (’tenuto’) (leaf)
last_descent = selectiontools.select (descents[-1], contiguous=True)

copied_descent = mutate (last_descent) .copy ()
for leaf in copied_descent:
if leaf.written_duration == durationtools.Duration (4, 4):
leaf.written_duration = durationtools.Duration (8, 4)
else:
leaf.written_duration = durationtools.Duration (4, 4)
voice.extend (copied_descent)

bridge = notetools.Note(’el’)
marktools.Articulation (’tenuto’) (bridge)
marktools.Articulation (’accent’) (bridge)
voice.append (bridge)

final_sustain_rhythm = [(6, 4)] % 21 + [(1, 2)]

final_sustain_notes = notetools.make_notes([’e’], final_sustain_rhythm)
marktools.Articulation (’accent’) (final_sustain_notes[0])
marktools.Articulation (’tenuto’) (final_sustain_notes[0])

voice.extend (final_sustain_notes)

64 Chapter 10. Part: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.13

spannertools.TieSpanner (final_sustain_notes)
voice.extend('r4d r2.")

def edit_cello_voice (score, durated_reservoir):

voice = score[’Cello Voice’]
descents = durated_reservoir[’Cello’]

tie_chain = inspect (voice[-1]) .get_tie_chain()
for leaf in tie_chain.leaves:

parent = leaf._get_parentage () .parent

index = parent.index (leaf)

parent [index] = chordtools.Chord([’e,’, '
selection = voice[-len (descents[-1]) :]
unison_descent = mutate (selection) .copy ()
voice.extend (unison_descent)
for chord in unison_descent:

a, "1,

index = inspect (chord) .get_parentage () .parent.index (chord)

parent [index] = notetools.Note (

chord.written_pitches[1l], chord.written_duration)
marktools.Articulation (’accent’) (parent [index])
marktools.Articulation (’tenuto’) (parent [index])

voice.extend(’'a,l. ~ a,2’)
voice.extend('b,1 ~ b,1. ~ b,1.7)
voice.extend(’a,1. ~ a,1. ~ a,1. ~ a,1l. ~ a,1. ~ a,2")
voice.extend('r4d r2.")
def edit_bass_voice(score, durated_reservoir):
voice = score[’Bass Voice’]
voice[-3:] = ’'<e, e>\maxima <d, d>\longa <c, c>\maxima <b,>\longa <a,>\maxima r4 r2.’

10.5 The marks

leaf.written_duration)

Now we’ll apply various kinds of marks, including dynamics, articulations, bowing indications, expressive in-

structures, page breaks and rehearsal marks.

We’ll start with the bowing marks. This involves creating a piece of custom markup to indicate rebowing. We ac-
complish this by aggregating together some markuptools. Markup Command and markuptools.MusicGlyph objects.

The completed markuptools.Markup object is then copied and attached at the correct locations in the score.

Why copy it? A Mark can only be attached to a single Component. If we attached the original piece of markup
to each of our target components in turn, only the last would actually receive the markup, as it would have be

detached from the preceding components.
Let’s take a look:
def apply_bowing_marks (score) :
apply alternating upbow and downbow for first

of the first violin
for measure in score[’First Violin Voice’][6:8]:

for i, chord in enumerate (iterationtools.iterate_chords_in_expr (measure)) :

two sounding bars

if i $ 2 == 0:
marktools.Articulation (’ downbow’) (chord)
else:
marktools.Articulation (" upbow’) (chord)

create and apply rebowing markup
rebow_markup = markuptools.Markup (
markuptools.MarkupCommand (

"concat’, [

markuptools.MusicGlyph (’ scripts.downbow’),

markuptools.MarkupCommand (" hspace’,

1),

markuptools.MusicGlyph (’ scripts.upbow’),

10.5. The marks

65

Abjad Documentation, Release 2.13

1))

copy .copy (rebow_markup) (score[’First Violin Voice’][64][0
[

copy .copy (rebow_markup) (score[’

copy .copy (rebow_markup) (score[’Viola Voice’

1)
Second Violin Voice’][75][0]
1086]1[01)

)

After dealing with custom markup, applying dynamics is easy. Just instantiate and attach:

def apply_dynamic_marks (score) :

We apply expressive marks the same way we applied our dynamics:

voice = score[’Bell Voice’]
contexttools.DynamicMark (" ppp’) (voice[0] [1])
contexttools.DynamicMark ("pp’) (voice[8][1])
contexttools.DynamicMark ("p’) (voice[18][1])
contexttools.DynamicMark (‘mp’) (voice[26] [1])
contexttools.DynamicMark(’mf) (voice[34][1])
contexttools.DynamicMark (" £7) (voice[42][1])
contexttools.DynamicMark (" ££’) (voice[52] [1])
contexttools.DynamicMark (" £££’) (voice[60][1])
contexttools.DynamicMark (" ££’) (voice[68] [1])
contexttools.DynamicMark (' £7) (voice[76][1])
contexttools.DynamicMark (‘mf’) (voice[84][1])
contexttools.DynamicMark ("pp’) (voice[-1]1[01])
voice = score[’First Violin Voice’]
contexttools.DynamicMark (' ppp’) (voice[6][1])
contexttools.DynamicMark ("pp’) (voice[15] [0])
contexttools.DynamicMark ("p’) (voice[22][3])
contexttools.DynamicMark (‘mp’) (voice[31][0])
contexttools.DynamicMark (‘mf’) (voice[38][3])
contexttools.DynamicMark (" £) (voice[47][0])
contexttools.DynamicMark (" ££7) (voice[55][2])
contexttools.DynamicMark (' £££’) (voice[62] [2])
voice = score[’Second Violin Voice’]
contexttools.DynamicMark ("pp’) (voice[7][0])
contexttools.DynamicMark ("p’) (voice[12][0])
contexttools.DynamicMark ("p’) (voice[16][0])
contexttools.DynamicMark (‘mp’) (voice[25][1])
contexttools.DynamicMark (‘mf’) (voice[34][1])
contexttools.DynamicMark (" £’) (voice[44][1])
contexttools.DynamicMark (" ££7) (voice[54] [0])
contexttools.DynamicMark (" £££") (voice[62] [1])
voice = score[’Viola Voice’]
contexttools.DynamicMark ("p’) (voice[8][0])
contexttools.DynamicMark (‘mp’) (voice[19] [1])
contexttools.DynamicMark (‘mf’) (voice[30] [0])
contexttools.DynamicMark (" £7) (voice[36][0])
contexttools.DynamicMark (' £7) (voice[42] [0])
contexttools.DynamicMark (' ££7) (voice[52][0])
contexttools.DynamicMark (' £££") (voice[62] [0])
voice = score[’Cello Voice’]
contexttools.DynamicMark ("p’) (voice[10][0])
contexttools.DynamicMark (‘mp’) (voice[21] [0])
contexttools.DynamicMark (‘mf’) (voice[31][0])
contexttools.DynamicMark (' £7) (voice[43][0])
contexttools.DynamicMark (" ££’) (voice[52] [1])
contexttools.DynamicMark (' ££ff’) (voice[62] [0])
voice = score[’Bass Voice’]
contexttools.DynamicMark (‘mp’) (voice[14] [0])
contexttools.DynamicMark (‘mf’) (voice[27][0])
contexttools.DynamicMark (" £) (voice[39] [0])
contexttools.DynamicMark (" ££’) (voice[51] [0])
contexttools.DynamicMark (' ££ff’) (voice[62][0])

def apply_expressive_marks (score) :

voice =

score[’First Violin Voice’]

66

Chapter 10. Part: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.13

markuptools.Markup (r’ \left-column { div. \line { con sord. } }’, Up) (
voice[6][1])
markuptools.Markup (/sim.’, Up) (voice[8] [

01)
markuptools.Markup (‘uniti’, Up) (voice[58]1[31)
markuptools.Markup (‘div.’, Up) (voice[59][0])
markuptools.Markup (‘uniti’, Up) (voice[63][31)
voice = score[’Second Violin Voice’]
markuptools.Markup ('div.’, Up) (voice[7][0])
markuptools.Markup (‘uniti’, Up) (voice[66][1])
markuptools.Markup ('div.’, Up) (voice[67][0])
markuptools.Markup (‘uniti’, Up) (voice[74]1[0])

voice = score[’Viola Voice’]
markuptools.Markup (' sole’, Up) (voice[8][0])

voice = score[’Cello Voice’]
markuptools.Markup ('div.’, Up) (voice[10][0])
markuptools.Markup (‘uniti’, Up) (voice[74]1[0])
markuptools.Markup (‘uniti’, Up) (voice[84]1[1])

markuptools.Markup (r’\italic { espr. }’, Down) (voice[86][0])
markuptools.Markup (r’\italic { molto espr. }’, Down) (voice[88][1]
voice = score[’Bass Voice’]

markuptools.Markup ('div.’, Up) (voice[14][0])

markuptools.Markup (r’\italic { espr. }’, Down) (voice[86][0])
mutate (voice[88][:]) .split ([Duration(l, 1), Duration(l, 2)1])
markuptools.Markup (r’\italic { molto espr. }’, Down) (voice[88][1]

markuptools.Markup (‘uniti’, Up) (voice[99][1])

strings_staff group = score[’Strings Staff Group’]
for voice in iterationtools.iterate_voices_in_expr (strings_staff_group) :

markuptools.Markup (r’\italic {

(non dim.)

},7

Down) (voice[102][0])

We use the marktools. LilyPondCommandClass to create LilyPond system breaks, and attach them to measures in
the percussion part. After this, our score will break in the exact same places as the original:

def apply_page_breaks (score) :
bell_voice = score[’Bell Voice’]

measure_indices = [5, 10, 15, 20, 25,
79, 86, 93, 100]

for measure_index in measure_indices:
marktools.LilyPondCommandMark (
"break’,
"after’
) (bell_voice[measure_index])

30,

35,

40,

45,

50, 55, 60, 65, 72,

We’ll make the rehearsal marks the exact same way we made our line breaks:

def apply_rehearsal_marks (score) :

bell_voice = score[’Bell Voice’]
measure_indices = [6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84,
90, 96, 102]

for measure_index in measure_indices:
marktools.LilyPondCommandMark (
r’mark \default’,
"before’
) (bell_voice[measure_index])

And then we add our final bar lines. marktools. BarLine objects inherit from marktools.Mark, so you can probably

guess by now how we add them to the score... instantiate and attach:

def apply_final bar_lines (score):

for voice in iterationtools.iterate_voices_in_expr (score) :

marktools.BarLine (' |.”) (voice[-1]

10.5. The marks

67

Abjad Documentation, Release 2.13

10.6 The LilyPond file

Finally, we create some functions to apply formatting directives to our Score object, then wrap it into a LilyPond-
File and apply some more formatting.

In our configure_score() functions, we use layouttools.make_spacing_vector() to create the correct Scheme con-
struct to tell LilyPond how to handle vertical space for its staves and staff groups. You should consult LilyPond’s
vertical spacing documentation for a complete explanation of what this Scheme code means:

>>> spacing_vector = layouttools.make_spacing_vector (0, 0, 8, 0)
>>> f (spacing_vector)
#’ ((basic-distance . 0) (minimum-distance . 0) (padding . 8) (stretchability . 0)

def configure_score (score) :

spacing_vector = layouttools.make_spacing_vector (0, 0, 8, 0)
score.override.vertical_axis_group.staff staff spacing = spacing_vector
score.override.staff_grouper.staff_ staff_ spacing = spacing_vector
score.override.staff_symbol.thickness = 0.5

score.set.mark_formatter = schemetools.Scheme (' format-mark-box—-numbers’)

In our configure_lilypond_file() function, we need to construct a ContextBlock definition in order to tell LilyPond
to hide empty staves, and additionally to hide empty staves if they appear in the first system:
def configure_lilypond_file(lilypond_file):

lilypond_file.global_staff_size = 8

context_block = lilypondfiletools.ContextBlock ()
context_block.context_name = r’Staff \RemoveEmptyStaves’
context_block.override.vertical_axis_group.remove_first = True
lilypond_file.layout_block.context_blocks.append (context_block)

slash_separator = marktools.LilyPondCommandMark (' slashSeparator’)
lilypond_file.paper_block.system separator_markup = slash_separator

bottom_margin = lilypondfiletools.LilyPondDimension (0.5, "in’)
lilypond_file.paper_block.bottom margin = bottom_margin

top_margin = lilypondfiletools.LilyPondDimension (0.5, ’in’)
lilypond_file.paper_block.top_margin = top_margin

left_margin = lilypondfiletools.LilyPondDimension (0.75, ’in’)
lilypond_file.paper_block.left_margin = left_margin

right_margin = lilypondfiletools.LilyPondDimension (0.5, ’“in’)

lilypond_file.paper_block.right_margin = right_margin

paper_width = lilypondfiletools.LilyPondDimension (5.25, ’in’)
lilypond_file.paper_block.paper_width = paper_width

paper_height = lilypondfiletools.LilyPondDimension(7.25, "in’)
lilypond_file.paper_block.paper_height = paper_height

lilypond_file.header_block.composer = markuptools.Markup ('Arvo Part’)

title = ’Cantus in Memory of Benjamin Britten (1980)
lilypond_file.header_block.title = markuptools.Markup (title)

Let’s run our original toplevel function to build the complete score:

>>> lilypond_file = make_part_lilypond_file ()

And here we show it:

68 Chapter 10. Part: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.13

>>> show(lilypond_file)

Cantus in Memory of Benjamin Britten (195800

— ﬁl —
#
Ny
lm@ = 3 =
b 13000 dFse 580 st
\ﬂ.l%
wilig S S P S
B ;;""—"-———-?. & w—
ve || = = - = E
-
M @
E'm? I= s
nmé" FZI B = r= 4> 3 H *
hi-;'_n e | e ——
wlpaE———— s :5_._1-3 i SiE—
o = e—

10.6. The LilyPond file

69

Abjad Documentation, Release 2.13

1]
=
1

o i [
cm%- ER |

e]
P

Bt

P s e .0 fFE 2

k]

| s e —
-
L % b};‘: 2‘4%;

e

Camp # =

m%? £: ¢ Bt ; -
mn%l'." g T e 8 — 3 o :‘_
‘I‘m"}n o —::" L s | = o
v || & & 5 T

-
o | H i i i

70

Chapter 10. Part: Cantus in Memory of Benjamin Britten

Part IV

Tutorials

7

CHAPTER
ELEVEN

FIRST STEPS WITH PYTHON,
LILYPOND AND ABJAD

11.1 Getting started

Abjad makes powerful programming techniques available to you when you compose. Read through the points
below and then click next to proceed.

11.1.1 Knowing your operating system

Before you start working with Abjad you should review the command line basics of your operating system. You
should know how move around the filesystem, how to list the contents of directories and how to copy files. You
should know enough about environment variables to make sure that your operating system knows where Abjad
is installed. You might also consider installing any OS updates on your computer, too, since you’ll need Python
2.7 to run Abjad. When you start building score with Abjad you’ll find the system to be almost entirely platform-
independent.

11.1.2 Chosing a text editor

You’ll edit many text files when you work with Abjad. So you’ll want to spend some time picking out a text
editor before you begin. If this is your first time programming you might want to Google and read what other
programmers have to say on the matter. Or you could ask a programmer friend about the editor she prefers. Linux
programmers sometimes like vi or emacs. Macintosh programmers might prefer TextMate. Whatever your
choice make sure you set your editor is set to produce plain text files before you start.

11.1.3 Launching the terminal

To work with Abjad you’ll need a terminal window. The way that you open the terminal window depends on your
computer. If you’re using MacOS X you can navigate from Applications to Utilities and then click on
Terminal. Linux and Windows house the terminal elsewhere. Regardless of the terminal client you chose the
purpose of the terminal is to let you type commands to your computer’s operating system.

11.1.4 Where to save your work

Where you choose to save the files you create with Abjad is up to you. Eventually you’ll want to create a dedicated
set of directories to organize your work. But for now you can create the files described in the tutorials on your
desktop, in your documents folder or anywhere else you like.

73

Abjad Documentation, Release 2.13

11.2 LilyPond “hello, world!”

Working with Abjad means working with LilyPond.
To start we’ll need to make sure LilyPond is installed.
Open the terminal and type 1ilypond —-version:

$ lilypond --version
GNU LilyPond 2.17.3

Copyright (c) 1996--2012 by
Han-Wen Nienhuys <hanwen@xs4all.nl>
Jan Nieuwenhuizen <janneke@gnu.org>
and others.

This program is free software. It is covered by the GNU General Public
License and you are welcome to change it and/or distribute copies of it
under certain conditions. Invoke as "“lilypond —--warranty' for more
information.

LilyPond responds with version and copyright information. If the terminal tells you that LilyPond is not found
then either LilyPond isn’t installed on your computer or else your computer doesn’t know where LilyPond is
installed.

If you haven’t installed LilyPond go to www . 1ilypond. org and download the current version of LilyPond for
your operating system.

If your computer doesn’t know where LilyPond is installed then you’ll have to tell your computer where LilyPond
is. Doing this depends on your operating system. If you’re running MacOS X or Linux then you need to make
sure that the location of the LilyPond binary is present in your PATH environment variable. If you don’t know
how to add things to your path you should Google or ask a friend.

11.2.1 Writing the file

Change to whatever directory you’d like and then use your text editor to create a new file called
hello_world.ly.

Type the following lines of LilyPond input into hello_world.ly:

\version "2.17.3"
\language "english"

\score {
c'4

}

Save hello_world. ly and quit your text editor when you’re done.

Note the following:

1. You can use either spaces or tabs while you type.

2. The version string you type must match the LilyPond version you found above.
3. The English language command tells LilyPond to use English note names.

4. The score block tells LilyPond that you're entering actual music.

5. The expression c'4 tells LilyPond to create a quarter note middle C.

6. LilyPond files end in .ly by convention.

11.2.2 Interpreting the file

Call LilyPond on hello_world.ly:

74 Chapter 11. First steps with Python, LilyPond and Abjad

Abjad Documentation, Release 2.13

$ lilypond hello_world.ly

GNU LilyPond 2.17.3

Processing "hello_world.ly'
Parsing...

Interpreting music...

Preprocessing graphical objects...
Finding the ideal number of pages...
Fitting music on 1 page...

Drawing systems...

Layout output to "hello_world.ps'...
Converting to " ./hello_world.pdf'...
Success: compilation successfully completed

LilyPond reads hello_world. ly as input and creates hello_world.pdf as output.
Open the hello_world.pdf file LilyPond creates.

You can do this by clicking on the file. Or you can open the file from the command line.
If you’re using MacOS X you can open hello_world.pdf like this:

$ open hello_world.pdf

Your operating system shows the score you created.

11.2.3 Repeating the process

Working with LilyPond means doing these things:

1. edit a LilyPond input file
2. interpet the input file
3. open the PDF and inspect your work

You’ll repeat this process many times to make your scores look the way you want. But no matter how complex
your music this edit-interpret-view loop will be the basic way you work.

11.3 Python “hello, world!” (at the interpreter)

Working with Abjad means programming in Python. Let’s start with Python’s interactive interpreter.

11.3.1 Starting the interpreter

Open the terminal and type python to start the interpreter:

$ python

Python responds with version information and a prompt:

Python 2.7.3 (v2.7.3:70274d53cldd, Apr 9 2012, 20:52:43)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

The purpose of the interpreter is to let you try out code one line at a time.

11.3. Python “hello, world!” (at the interpreter) 75

Abjad Documentation, Release 2.13

11.3.2 Entering commands

Type the following at the interpreter’s prompt:

>>> print ’'hello, world!’
hello, world!

Python responds by printing hello, world! to the terminal.

11.3.3 Stopping the interpreter

Type quit (). Or type the two-key combination ct r1+D:

>>> quit ()

The interpreter stops and returns you to the terminal.

The Python interpreter is a good way to do relatively small things quickly.

But as your projects become more complex you will want to organize the code you write in files.

This is the topic of the next tutorial.

11.4 Python “hello, world!” (in a file)

This tutorial recaps the Python “hello, world!” of the previous the tutorial. The difference is that here you’ll save
the code you write to disk.

11.4.1 Writing the file

Change to whatever directory you’d like and then use your text editor to create a new file called
hello_world.py.
Type the following line of Python code into hello_world.py:

print 'hello, world!’

Save hello_world.py when you’re done.

11.4.2 Interpreting the file

Open the terminal and call Python on hello_world.py:

$ python hello_world.py
hello, world!

Python reads hello_world.py as input and outputs hello, world! to the terminal.

11.4.3 Repeating the process

Working with Python files means doing these things:

1. write a file
2. interpret the file
3. repeat 1 - 2

Experience will make this edit-interpret loop familiar. And no matter how complicated the projects you develop
this way of working with Python files will stay the same.

76 Chapter 11. First steps with Python, LilyPond and Abjad

Abjad Documentation, Release 2.13

11.5 More about Python

The tutorials earlier in this section showed basic ways to work with Python. In this tutorial we’ll use the interactive
interpreter to find out more about the language and library of tools that it contains.

11.5.1 Doing many things

You can use the Python interpreter to do many things.
Simple math like addition looks like this:

>>> 2 + 2
4

Exponentiation looks like this:

>>> 2 xx 38
274877906944

Interacting with the Python interpreter means typing something as input that Python then evaluates and prints as
output.

As you learn more about Abjad you’ll work more with Python files than with the Python interpreter. But the
Python interpreter’s input-output loop makes it easy to see what Python is all about.

11.5.2 Looking around

Use dir () to see the things the Python interpreter knows about:

>>> dir ()
["_builtins_ ", ' doc__ ", ’'_name_ ', ’'_ _package_ ']

These four things are the only elements that Python loads into the so-called global namespace when you start the
interpreter.

Now let’s define the variable x:

>>> x = 10

Which lets us do things with x:

>>> X kK 2
100

When we call dir () now we see that the global namespace has changed:

>>> dir ()

[/__builtins_ ', Y U

— — 7

’

name , '__package__ ' !

'y 'x7]
Using dir () is a good way to check the variables Python knows about when it runs.
Now type __builtins___ atthe prompt:

>>> _ builtins___
<module ’_ _builtin_ '’ (built-in)>

Python responds and tells us that __builtins___is the name of a module.
A module is file full of Python code that somebody has written to provide new functionality.

Use dir () toinspect the contents of __builtins__:

>>> dir(__builtins_)

["ArithmeticError’, ’AssertionError’, ’AttributeError’, ’BaseException’, ’BufferError’, ’'BytesWarning’,
"DeprecationWarning’, ’EOFError’, ’'Ellipsis’, ’EnvironmentError’, ’Exception’, ’'False’, ’FloatingPointError’,
"FutureWarning’, ’GeneratorExit’, ’IOError’, ’ImportError’, ’'ImportWarning’, ’IndentationError’,

11.5. More about Python 77

Abjad Documentation, Release 2.13

"IndexError’, ’'KeyError’, ’'KeyboardInterrupt’, ’'LookupError’, ’'MemoryError’, ’NameError’, ’'None’,
"NotImplemented’, ’'NotImplementedError’, ’OSError’, ’'OverflowError’, ’PendingDeprecationWarning’,
"ReferenceError’, ’'RuntimeError’, ’RuntimeWarning’, ’StandardError’, ’Stoplteration’, ’SyntaxError’,
’SyntaxWarning’, ’SystemError’, ’SystemExit’, ’'TabError’, ’'True’, ’'TypeError’, ’'UnboundLocalError’,
"UnicodeDecodeError’, ’UnicodeEncodeError’, ’'UnicodeError’, ’UnicodeTranslateError’, ’'UnicodeWarning’,

"UserWarning’, ’ValueError’, ’'Warning’, ’ZeroDivisionError’, ’'_’, ’'__debug_ ', ’'__doc__ ', '__import__ ',

" _name__ ', '__package__ ', ’abs’, ’all’, ’"any’, "apply’, ’'basestring’, ’bin’, ’'bool’, ’'buffer’,

"bytearray’, ’'bytes’, ’callable’, ’chr’, ’classmethod’, ’'cmp’, ’coerce’, ’'compile’, ’'complex’, ’copyright’,

"credits’, ’'delattr’, ’'dict’, ’'dir’, ’'divmod’, ’'enumerate’, ’'eval’, ’'execfile’, ’'exit’, 'file’, ’'filter’,
"float’, ’'format’, ’'frozenset’, ’'getattr’, ’‘globals’, ’"hasattr’, ’"hash’, ’'help’, ’'hex’, ’id’, ’input’, ’'int’,
"intern’, ’isinstance’, ’issubclass’, ’iter’, ’len’, ’license’, ’list’, ’‘locals’, ’long’, ’'map’, ’'max’,
"memoryview’, ’'min’, ’‘next’, ’object’, ’'oct’, ’open’, 'ord’, ’'pow’, ’'print’, ’property’, ’quit’, ’'range’,
"raw_input’, ’‘reduce’, 'relocad’, ’'repr’, ’reversed’, ’'round’, ’'set’, ’'setattr’, ’'slice’, ’sorted’,
"staticmethod’, ’str’, ’sum’, ’‘super’, ’tuple’, ’‘type’, ’‘unichr’, ’‘unicode’, ’‘vars’, ’'xrange’, ’'zip’]

Python responds with a list of many names.

Use Python’s len () command together with the last-output character _ to find out how many names
__builtins___ contains:

>>> len(_)
144

These names make up the core of the Python programming language.
As you learn Abjad you’ll use some Python built-ins all the time and others less often.

Before moving on, notice that both dir () and len () appear in the list above. This explains why we’ve been
able to use these commands in this tutorial.

11.6 Abjad “hello, world” (at the interpreter)

11.6.1 Starting the interpreter

Open the terminal and start the Python interpreter:

abjad$ python

Python 2.7.3 (v2.7.3:70274d53cldd, Apr 9 2012, 20:52:43)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

Then import Abjad:

>>> from abjad import =«

If Abjad is installed on your system then Python will silently load Abjad. If Abjad isn’t installed on your system
then Python will raise an import error.

Go to www.projectabjad. org and follow the instructions there to install Abjad if necessary.

11.6.2 Entering commands

After you’ve imported Abjad you can create a note like this:

>>> note = Note ("c’4")

And you can show the note like this:

>>> show (note)

78 Chapter 11. First steps with Python, LilyPond and Abjad

Abjad Documentation, Release 2.13

11.6.3 Stopping the interpreter

Type quit () or ctr1+D when you're done:

>>> ~D

Working with the interpreter is a good way to test out small bits of code in Abjad. As your scores become more
complex you will want to organize the code your write with Abjad in files. This is the topic of the next tutorial.

11.7 Abjad “hello, world!” (in a file)

11.7.1 Writing the file

Open the terminal and change to whatever directory you’d like.

Use your text editor to create a new file called hello_world.py. If you have hello_world.py left over
from earlier you should delete it and create a new file.

Type the following lines of code into hello_world.py:

from abjad import =

note = Note("c’4")
show (note)

Save hello_world.py and quit your text editor.

11.7.2 Interpreting the file

Call Python on hello_world.py:

$ python hello_world.py

Python reads hello_world.py and shows the score you’ve created.

11.7.3 Repeating the process

Working with files in Abjad means that you do these things:

1. edit a file
2. interpret the file

These steps make up a type of edit-interpret loop.

This way of working with Abjad remains the same no matter how complex the scores you build.

11.7. Abjad “hello, world!” (in a file) 79

Abjad Documentation, Release 2.13

11.8 More about Abjad

11.8.1 How it works

How does Python suddenly know what musical notes are? And how to make musical score?
Use Python’s dir () built-in to get a sense of the answer:

>>> dir ()

["abjad_configuration’, ’Chord’, ’Container’, ’Duration’, ’'Fraction’,
"Measure’, ’Note’, 'Rest’, ’Score’, ’'Staff’, ’'Tuplet’, ’'Voice’,

' __builtins_ ', ’__doc_ ', '_name_ ', ’'__package_ ',

! __warningregistry__’, ’abctools’, ’abjadbooktools’, ’beamtools’,
"chordtools’, ’'componenttools’, ’configurationtools’, ’containertools’,
"contexttools’, ’datastructuretools’, ’decoratortools’,
"developerscripttools’, ’documentationtools’, ’durationtools’,
"exceptiontools’, "f’, ’formattools’, ’gracetools’, ’importtools’,
"instrumenttools’, ’‘introspectiontools’, ’iotools’, ’iterationtools’,
"labeltools’, ’layouttools’, ’leaftools’, ’lilypondfiletools’,
"lilypondparsertools’, ’lilypondproxytools’, ’'marktools’, ’'markuptools’,
"mathtools’, ’'measuretools’, ’'notetools’, ’updatetools’, ’'p’,
"pitcharraytools’, ’'pitchtools’, ’'play’, ’resttools’, ’'rhythmtreetools’,
"schemetools’, ’scoretemplatetools’, ’scoretools’, ’sequencetools’, ’show’,
"sievetools’, ’skiptools’, ’spannertools’, ’'stafftools’, ’stringtools’,
"tempotools’, ’'tietools’, ’'timeintervaltools’, ’timesignaturetools’,
"rhythmmakertools’, ’tonalanalysistools’, ’tuplettools’,
"verticalitytools’, ’'voicetools’, ’'wellformednesstools’, ’z’]

Calling from abjad import =* causes Python to load hundreds or thousands of lines of Abjad’s code into
the global namespace for you to use. Abjad’s code is organized into a collection of several dozen different score-
related packages. These packages comprise hundreds of classes that model things like notes and rests and more
than a thousand functions that let you do things like transpose music or change the way beams look in your score.

11.8.2 Inspecting output

Use dir () to take a look at the contents of the 1ot ools package:

>>> dir (iotools)

[/_builtins_ ', '__doc_ ', '__file ', ’'__name__ ', ’'__package_ ',

" _path__ ', ’'_documentation_section’, ’'clear_terminal’, ’'f’,
"get_last_output_file_name’, ’get_next_output_file name’, ’importtools’,
"log’, 'ly’, 'p’, 'pdf’, ’'play’, ’'profile_expr’, ’'redo’, ’'save_last_ly_as’,
"save_last_pdf_as’, ’show’, ’spawn_subprocess’, ’'write_expr_to_ly’,

"write_expr_to_pdf’, ’'z’]

The iotools package implements I/O functions that help you work with the files you create in Abjad.
Use iotools.ly () to see the last LilyPond input file created in Abjad:

% Abjad revision 12452
% 2013-10-22 13:32

\version "2.17.3"

\language "english"
\header {

tagline = \markup { }

\score {
c'4

Notice:

1. Abjad inserts two lines of %-prefixed comments at the top of the LilyPond files it creates.

80 Chapter 11. First steps with Python, LilyPond and Abjad

Abjad Documentation, Release 2.13

2. Abjad includes version and language commands automatically.

3. Abjad includes a special abjad.scm file resident somewhere on your computer.

4. Abjad includes dummy LilyPond header.

5. Abjad includes a one-note score expression similar to the one you created in the last tutorial.

When you called show (note) Abjad created the LilyPond input file shown above. Abjad then called LilyPond
on that . 1y file to create a PDF.

(Quit your text editor in the usual way to return to the Python interpreter.)
Now use iotools.log () to see the output LilyPond created as it ran:

GNU LilyPond 2.17.3

Processing ~7721.1ly"

Parsing...

Interpreting music...

Preprocessing graphical objects...
Finding the ideal number of pages...
Fitting music on 1 page...

Drawing systems...

Layout output to “7721.ps'...
Converting to ~./7721.pdf'...
Success: compilation successfully completed

This will look familiar from the previous tutorial where we created a LilyPond file by hand.

(Quit your text editor in the usual way to return to the Python interpreter.)

11.8. More about Abjad 81

Abjad Documentation, Release 2.13

82 Chapter 11. First steps with Python, LilyPond and Abjad

CHAPTER
TWELVE

WORKING WITH NOTATION

12.1 Working with lists of numbers

Python provides a built-in 11ist type that you can use to carry around almost anything.

12.1.1 Creating lists

Create a list with square brackets:

>>> my_list = [23, 7, 10, 18, 13, 20, 3, 2, 18, 9, 14, 3]
>>> my_list
[23, 7, 10, 18, 13, 20, 3, 2, 18, 9, 14, 3]

12.1.2 Inspecting list attributes

Use len () to find the number of elements in any list

>>> len(my_list)
12

12.1.3 Adding and removing elements

Use append () to add one element to a list:

>>> my_list.append(5)
>>> my_list
[23, 7, 10, 18, 13, 20, 3, 2, 18, 9, 14, 3, 5]

Use extend () to extend one list with the contents of another:

>>> my_other_ list = [19, 11, 4, 10, 12]

>>> my_list.extend (my_other_list)

>>> my_list

(23, 7, 10, 18, 13, 20, 3, 2, 18, 9, 14, 3, 5, 19, 11, 4, 10, 12]

12.1.4 Indexing and slicing lists

You can return a single value from a list with a numeric index:

>>> my_list[0]
12
>>> my_list[1]
10
>>> my_list[2]
4

83

Abjad Documentation, Release 2.13

You can return many values from a list with slice notation:

>>> my_list[:4]
[12, 10, 4, 11]

12.1.5 Reversing the order of elements

Use reverse () toreverse the elements in a list:
>>> my_list.reverse ()

>>> my_list
[12, 1o, 4, 11, 19, 5, 3, 14, 9, 18, 2, 3, 20, 13, 18, 10, 7, 23]

More information on these and all other operations defined on the built-in Python 1ist is available in the Python
tutorial.

12.2 Changing notes to rests

12.2.1 Making a repeating pattern of notes

It is easy to make a repeating pattern of notes.

Multiplying the list [0, 2, 4, 9, 7] by 4 creates a new list of twenty pitch numbers.
The call to notetools.make_notes () creates our notes:

>>> pitch_numbers = 4 % [0, 2, 4, 9, 7]

>>> duration = Duration(l, 8)

>>> notes = notetools.make_notes (pitch_numbers, duration)

>>> staff = Staff (notes)
>>> show (staff)

1
:W'E'Ej_"
[, - -

12.2.2 Iterating the notes in a staff

i

o e
dve g 9

ol

Use iterationtools to iterate the notes in any expression:

>>> for note in iterationtools.iterate_notes_in_expr (staff):

note
Note ("c’8")
Note ("d’8")
Note ("e’8")
Note ("a’8")
Note ("g’8")
Note ("c’8")
Note ("d’8")
Note ("e’8")
Note ("a’8")
Note ("g’8")
Note ("c’8")
Note ("d’8")
Note ("e’8")
Note ("a’8")
Note(”g’ 8")
Note ("c’8")
Note ("d’8")
Note ("e’8")
Note ("a’8")
Note(”g’ 8")

84 Chapter 12. Working with notation

http://docs.python.org/tutorial/introduction.html#lists
http://docs.python.org/tutorial/introduction.html#lists

Abjad Documentation, Release 2.13

12.2.3 Enumerating the notes in a staff

Use Python’s built-in enumerate () function to enumerate the elements in any iterable:

>>> generator = iterationtools.iterate_notes_in_expr (staff)
>>> for i, note in enumerate (generator):
i, note

Note ("c’8")
Note ("d’8")
Note ("e’8")
Note ("a’8")
Note ("qr 8")
Note ("c’ 9%
Note ("d’8")
Note ("e’8")
Note ("a’8")
Note ("gr 8")
"
Al
Al
"
"

~ 0~ 0~ 0~

~

~ 0~ 0~

W 0O Jo U W EFE O -
~ .

~

[
o
~

Note ("c’ 8"

[l
=
~

Note ("

[
oW N
z 2 2
O O O
&t o
™ O O

—
ul
Z
O
=
[0}

—
~
zZ
o
o
®

i
[es}
2
(e}
&
(0]

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

—
o
2
(e}
&
(0]

—
)
zZ
o
s
0}

12.2.4 Changing notes to rests by index

We can change every sixth note in a our score to a rest like this:

>>> generator = iterationtools.iterate_notes_in_expr (staff)
>>> for i, note in enumerate (generator) :
if 1 % 6 == 5:
rest = Rest ('r8’)
staff[i] = rest

>>> show (staff)

th

-l
Yo

) - v -

12.2.5 Changing notes to rests by pitch

Let’s make a new staff:

>>> pitch_numbers = 4 % [0, 2, 4, 9, 7]
>>> duration = Duration(1l, 8)
>>> notes = notetools.make_notes (pitch_numbers, duration)

>>> staff = Staff (notes)
>>> show (staff)

0 — et e I I ™
T da [Had T e Taa

1
Y, & e - . * & - - *
Now we can change every D4 to a rest like this:

>>> generator = iterationtools.iterate_notes_in_expr (staff)
>>> for i, note in enumerate (generator):
if note.sounding_pitch == "d’'":
rest = Rest (’'r8’")

12.2. Changing notes to rests 85

Abjad Documentation, Release 2.13

staff[i] = rest

>>> show (staff)

4]

Y N Ay 17 a4 |7 #e

[, rs - - -

12.3 Creating rest-delimited slurs

Take a look at the slurs in the following example and notice that there is a pattern to how they arranged.

f) —3— AN | i
— —
7 s R G T shie s
g & @ E = 4« o
— I —

The pattern? Slurs in the example span groups of notes and chords separated by rests.

Abjad makes it easy to create rest-delimited slurs in a structured way.

12.3.1 Entering input

Let’s start with the note input like this:

>>> string = pnnn
\times 2/3 { c¢’4 d’' r }
r8 e’4 <fs’ a’ c’'’>8 ~ g4
\times 4/5 { rl6 g’ r b’ d’’ }
df’4 ¢’ ~ c'l

>>> staff = Staff (string)

>>> show (staff)

o) —3— N
#:(! : E\ % i ~
() ! ‘d — a‘;ﬁi?ﬂ' I :
v/ - - -

12.3.2 Grouping notes and chords

Next we’ll group notes and chords together with one of the functions available in the componenttools pack-
age.

We add slur spanners inside our loop:

>>> leaves = iterationtools.iterate_leaves_in_expr (staff)
>>> for group in iterationtools.iterate_runs_in_expr (leaves, (Note, Chord)):
spannertools.SlurSpanner (group)

SlurSpanner (c’4, d’4)

(c

SlurSpanner (e’ 4, <fs’ a’ c’’>8, <fs’ a’ c’'’>4)
(
(

SlurSpanner (g’ 16)
SlurSpanner (b’16, d’’16, df’4, c’4, c’'l)

Here’s the result:

>>> show (staff)

86 Chapter 12. Working with notation

Abjad Documentation, Release 2.13

A —3— A
w P —
e e = e ——
3 — & =~

But there’s a problem.
Four slur spanners were generated but only three slurs are shown.

Why? Because LilyPond ignores one-note slurs.

12.3.3 Skipping one-note slurs

Let’s rewrite our example to prevent that from happening:

>>> staff = Staff (string)
>>> leaves = iterationtools.iterate_leaves_in_expr (staff)
>>> classes = (Note, Chord)
>>> for group in iterationtools.iterate_runs_in_expr (leaves, classes):
if 1 < len(group):
spannertools.SlurSpanner (group)

SlurSpanner (c’4, d’4)

SlurSpanner (e’4, <fs’ a’ c’’>8, <fs’ a’ c’'’>4)
SlurSpanner (b’16, d’’16, df’4, c’4, c'1l)

And here’s the corrected result:

>>> show (staff)

o) —3—™ N |
: » i .-"'-' | —
I 1 [y L | 1 ey
g & @ e = S S —
[5 — —

12.4 Mapping lists to rhythms

Let’s say you have a list of numbers that you want to convert into rhythmic notation. This is very easy to do. There
are a number of related topics that are presented separately as other tutorials.

12.4.1 Simple example

First create a list of integer representing numerators. Then turn that list into a list of Durations instances:

>>> integers = [4, 2, 2, 4, 3, 1, 5]
>>> denominator = 8
>>> durations = [Duration (i, denominator) for i in integers]

Now we notate them using a single pitch with the function notetools.make_notes():

>>> notes = notetools.make_notes(["c’"], durations)
>>> staff = Staff (notes)
>>> show (staff)

f

ﬂ il M

| Fan T W3 .

b T 1 11

(2 = L - 4 =
o S—

There we have it. Durations notated based on a simple list of numbers. Read the tutorials on splitting rhythms
based on beats or bars in order to notate more complex duration patterns. Also, consider how changing the
denominator in the Fraction above would change the series of durations.

=tms

12.4. Mapping lists to rhythms 87

Abjad Documentation, Release 2.13

12.5 Overriding LilyPond grobs

LilyPond models music notation as a collection of graphic objects or grobs.

12.5.1 Grobs control typography

LilyPond grobs control the typographic details of the score:

>>> staff = Staff("c’4 (d’4) e’4 (£74) g'4 (a"4) g'2")

>>> f (staff)
\new Staff {

>>> show (staff)

() - —_— =

In the example above LilyPond creates a grob for every printed glyph. This includes the clef and time signature as
well as the note heads, stems and slurs. If the example included beams, articulations or an explicit key signature
then LilyPond would create grobs for those as well.

12.5.2 Abjad grob-override component plug-ins

Abjad lets you work with LilyPond grobs.
All Abjad containers have a grob-override plug-in:

>>> staff = Staff("c’4 d’4 "4 £'4 g’4 a’4 g’'2")
>>> show (staff)

4} -
A i) 1 E } E
(2] -
>>> staff.override.staff_symbol.color = 'blue’

>>> staff.override
LilyPondGrobOverrideComponentPlugIn (staff_symbol_ _color='blue’)

>>> show (staff)

_if T 1

F i} F— I g
() - j -~

All Abjad leaves have a grob-override plug-in, too:
>>> leaf = staff[-1]

>>> leaf.override.note_head.color = 'red’
>>> leaf.override.stem.color = "red’

>>> leaf.override
LilyPondGrobOverrideComponentPlugIn (note_head__color='"red’, stem__color='red’)

88 Chapter 12. Working with notation

Abjad Documentation, Release 2.13

>>> show (staff)

) T

g"’ e T I
And so do Abjad spanners:
>>> slur = spannertools.SlurSpanner (staff[:])
>>> slur.override.slur.color = ’red’

>>> slur.override
LilyPondGrobOverrideComponentPlugIn (slur__color='red’)

>>> show (staff)

) S T

[, ‘tui____d_-fJ*’ﬂHﬁ

12.5.3 Nested Grob properties can be overriden
In the above example, staff_symbol, note_head and stem correspond to the LilyPond grobs StaffSymbol, NoteHead
and Stem, while color in each case is the color properties of that graphic object.

It is not uncommon in LilyPond scores to see more complex overrides, consisting of a grob name and a list of two
or more property names:

\override StaffGrouper #'staff-staff-spacing #'basic-distance = #7

To achieve the Abjad equivalent, simply concatenate the property names with double-underscores:
>>> staff = Staff ()
>>> staff.override.staff_grouper.staff_staff_spacing__basic_distance = 7
>>> f (staff)
\new Staff \with {
\override StaffGrouper #’'staff-staff-spacing #’basic-distance = #7

bAoA
}

Abjad will explode the double-underscore delimited Python property into a LilyPond property list.

12.5.4 Check the LilyPond docs

New grobs are added to LilyPond from time to time.

For a complete list of LilyPond grobs see the LilyPond documentation.

12.6 Understanding time signature marks

In this tutorial we take a deeper look at what happens when we attach time signature marks to staves and other
score components.

At the end of the tutorial you’ll understand how time signature marks are created.

You’ll also understand how the states of different objects change when you attach and detach time signature marks.

12.6.1 Getting started

We start by creating a staff full of notes:

12.6. Understanding time signature marks 89

http://lilypond.org/doc/v2.13/Documentation/internals/all-layout-objects

Abjad Documentation, Release 2.13

>>> staff = Staff("c’4 d’4 e’4 £74 g'2")

The interpreter representation of our staff looks like this:

>>> staff
Staff{5}

The 5 in Staff {5} shows that the staff contains five top-level components. The curly braces in Staff {5}
show that the contents of the staff are to be read sequentially through time rather than simultaneously.

Before we get to time signature marks let’s take a moment and examine the state of the staff we’ve created. We
can motivate this a bit by asking two questions:

1. what time signature is currently in effect for the staff we have just created?
2. what is the time signature currently in effect for the five notes contained within the staff we have just created?

The answer to both questions is the same: there is no time signature currently in effect for either our staff or for
the five notes it contains.

We can use the inspector to see that this is the case:

>>> print inspect (staff) .get_effective_context_mark (contexttools.TimeSignatureMark)
None

And:

>>> for leaf in staff.select_leaves():
print inspect (leaf) .get_effective_context_mark (
contexttools.TimeSignatureMark)
None
None
None
None
None

And we can iterate both the staff and its leaves at one and the same time like this:

>>> for component in iterationtools.iterate_components_in_expr (staff) :
effective_time_signature = inspect (component) .get_effective_context_mark (
contexttools.TimeSignatureMark)
print component, effective_time_signature

Staff{5} None
c’4 None
d’” 4 None
e’ 4 None
f74 None
g’ 2 None

This confirms the answers to our questions. There is not yet any time signature in effect for any component in our
staff because we have not yet attached a time signature mark to any component in our staff.

12.6.2 LilyPond’s implicit 4/4

So what happens if we format our staff and send it off to LilyPond to render as a PDF? Will LilyPond render the
staff with a time signature? Without a time signature? Will LilyPond refuse to render the example at all?

‘We find out like this:

>>> show (staff)

f)

o T |
F i) 7 [|

e/ -

It turns out LilyPond defaults to a time signature of 4 /4.

90 Chapter 12. Working with notation

Abjad Documentation, Release 2.13

What’s important to note here is that because we have not yet attached a time signature mark any component in
our staff Abjad says “no effective time signature here” while LilyPond says “OK, I'll default to 4/4 so we can
get on with rendering your music.”

We can further confirm that this is the case by asking Abjad for the LilyPond format of our staft:

>>> f (staff)
\new Staff {
c’4
dr4a
e’ 4
fr4
g’'2
}

The LilyPond format of our staff contains no LilyPond \t ime command. This is, again, because we have not yet
attached a time signature mark to any component in our staff.

12.6.3 Using time signature marks

We can now practice attaching and detaching time signature marks to different components in our staff and study
what happens as we do.

We’ll start with 3/4.

The easiest thing to do is to attach a time signature mark to the staff itself.

We’ll do this in two separate steps and study each step to understand exactly what’s going on.

First, we create a 3/4 time signature mark:

>>> time_signature_mark = contexttools.TimeSignatureMark ((3, 4))

The interpreter representation of our time signature looks like this:

>>> time_signature_mark
TimeSignatureMark ((3, 4))

All this tells us is that we have in fact created a 3/4 time signature mark. Nothing too exciting yet. At this point
our 3/4 time signature is not yet attached to anything. We could say that the “state” of our time signature mark is
“unattached.” And we can see this like so:

>>> time_signature_mark.start_component is None
True

What does it mean for a time signature mark to have ’ start_component’ equal to none? It means that the
time signature isn’t yet attached to any score component anywhere.

So now we attach our time signature mark to our staff:

>>> time_signature_mark.attach (staff)
TimeSignatureMark ((3, 4)) (Staff{5})

Abjad responds immediately by returning the time signature mark we have just attached.

Notice that the interpreter representation of our time signature mark has changed. The interpreter representation
of our 3/4 time signature mark now includes the staff to which we have just attached the time signature mark.
That is to say that the interpreter representation of our time signature mark is statal.

Our time signature mark has transitioned from an “unattached” state to an “attached” state. We can see this like
so:

>>> time_signature_mark.start_component
Staff{5}

And our staff has likewise transitioned from a state of having no effective time signature to a state of having an
effective time signature:

12.6. Understanding time signature marks 91

Abjad Documentation, Release 2.13

>>> inspect (staff) .get_effective_context_mark (contexttools.TimeSignatureMark)
TimeSignatureMark ((3, 4)) (Staff{5})

And what about the leaves inside our staff? Do the leaves now “know” that they are governed by a 3/4 time
signature?
Indeed they do:
>>> for leaf in staff.select_leaves():
effective_time_signature = inspect (leaf) .get_effective_context_mark (

contexttools.TimeSignatureMark)
print leaf, effective_time_signature

c’4 3/4
d’4 3/4
e’4 3/4

£74 3/4
g’2 3/4

Briefly to resume:
What we just did was to:
1. create a time signature mark
2. attach the time signature to a score component
This 2-step pattern is always the same when dealing with context marks: create then attach.
Before moving on let’s look at the PDF corresponding to our staft:

>>> show (staff)

O
o
Y1112
i

And let’s confirm what we see in the PDF in the staff’s format:

>>> f (staff)
\new Staff {
\time 3/4
c’4
d’4
e’ 4
fr4
g’2
}

The staff’s format now contains a LilyPond \t ime command because we have attached an Abjad time signature
mark to the staff.

What we’ve just been through above will cover over 80% of what you’ll ever wind up doing with time signature
marks: creating them and attaching them directly to staves. But what if we wan to get rid of a time signature
mark? Or what if the time signature will be changing all over the place? We cover those cases next.

Detaching a time signature mark is easy:

>>> time_signature_mark.detach ()
TimeSignatureMark ((3, 4))

Abjad returns the mark we have just detached. And the interpreter representation of the time signature mark has
again changed state: the time signature mark has transitioned from attached to unattached. We confirm this like
so:

>>> time_signature_mark.start_component is None
True

And also like so:

92 Chapter 12. Working with notation

Abjad Documentation, Release 2.13

>>> print inspect (staff) .get_effective_context_mark (contexttools.TimeSignatureMark)
None

Our time signature mark now knows nothing about our staff. And vice versa.
So now what if we want to set up a time signature of 2 /47?

We have a couple of options.

We can simply create and attach a new time signature mark:

>>> duple_time_signature_mark = contexttools.TimeSignatureMark ((2, 4))
>>> duple_time_signature_mark.attach (staff)
TimeSignatureMark ((2, 4)) (Staff{5})

>>> f (staff)
\new Staff {
\time 2/4
c’4
d’ 4
e’ 4
fr4
g’2

>>> show (staff)

4]

h*)] M |
Fal .

| a1 |
A T 3

e/ -
Yup. That works.

@il

On the other hand, we could simply reuse our previous 3/4 time signature mark.
To do this we’ll first detach our 2 /4 time signature mark ...

>>> duple_time_signature_mark.detach ()
TimeSignatureMark ((2, 4))

... confirm that our staff is now time signatureless ...

>>> print inspect (staff) .get_effective_context_mark (contexttools.TimeSignatureMark)
None

>>> f (staff)
\new Staff {
c’4
d’ 4
e’ 4
fr4
g'2

... reattach our previous 3/4 time signature ...

>>> time_signature_mark.attach (staff)
TimeSignatureMark ((3, 4)) (Staff{5})

... change the numerator of our time signature mark ...

>>> time_signature_mark.numerator = 2

... and check to make sure that everything is as it should be:

>>> inspect (staff) .get_effective_context_mark (contexttools.TimeSignatureMark)
TimeSignatureMark ((2, 4)) (Staff{5})

>>> time_signature_mark.start_component

Staff{5}

12.6. Understanding time signature marks 93

Abjad Documentation, Release 2.13

>>> f (staff)

\new Staff {
\time 2/4
c’4

ar

e’

fl

9

14

N BB D

>>> show (staff)

| 1 |
Qlll

And everything works as it should.
To change to 4 /4 we change just change the time signature mark’s numerator again:

>>> time_signature_mark.numerator = 4

>>> show (staff)

4]

Fif] 4 1 |

e/ -

>>> f (staff)
\new Staff {
\time 4/4
c’4
d’ 4
e’ 4
fr4
g'2

12.6.4 First-measure pick-ups

But what if our time signature has a 2 /4 pick-up?

The LilyPond command for pick-ups is \partial. Abjad time signature marks implement this as a read / write
attribute:

>>> time_signature_mark.partial = Duration (2, 4)

>>> f (staff)
\new Staff {
\partial 2
\time 4/4
c’4
d’4
e’ 4
fr4
g’2

>>> show (staff)

f)

1 :
Fil] . | 1

Wlll

And what if time signature changes all over the place?

We’ll use the trivial example of a measure in 4 /4 followed by a measure in 2 /4.

94 Chapter 12. Working with notation

Abjad Documentation, Release 2.13

To do this we will need two time signature marks.
We’ve already got a 4/ 4 time signature mark attached to our staff:

>>> f (staff)
\new Staff {
\partial 2
\time 4/4
c’4
d’ 4
e’ 4
£r4
g'2
}

Let’s get rid of the pick-up:

>>> time_signature_mark.partial = None

>>> f (staff)

\new Staff {
\time 4/4
c’4

’

N BB

14

d
e
£
g9
}

Now what about the 2 /4 time signature mark?
We create it in the usual way:

>>> duple_time_signature_mark = contexttools.TimeSignatureMark ((2, 4)
>>> duple_time_signature_mark
TimeSignatureMark ((2, 4))

But should we attach it? We can’t attach our 2/4 time signature to our staff because we’ve already attached
our 4/4 time signature to our staff. And it only makes sense to attach one time signature to any given score
component.

Observe that we’ve built our score in a very straightforward way: we have a single staff that contains a (flat)
sequence of notes. This means that we have only one choice for where to attach the new 2 /4 time signature mark.
And that is one the g’ 2 that comes on the downbeat of the second measure. We do that like this:

>>> duple_time_signature_mark.attach (staff[4])
TimeSignatureMark ((2, 4)) (g’2)

>>> f (staff)
\new Staff {
\time 4/4
c’4
d’ 4
e’ 4
fr4
\time 2/4
g’'2

>>> show (staff)

ﬂ T} i
F (E—— e 1
T—
(= —

o) -

And everything works as we would like.

Incidentally, staff [4] means the component sitting at index 4 inside our staff. Using the interpreter we can
verify that this is g’ 2:

12.6. Understanding time signature marks 95

Abjad Documentation, Release 2.13

>>> staff[4]
Note(”g’ 2m)

Depending on how we had chosen to build our staff we would have had more options for where to attach our
2 /4 time signature mark. If, for example, we had chosen to populate our staff with a series of measures then it’s
possible we could have attached our 2 /4 time signature to a measure instead of a note.

12.7 Working with component parentage

Many score objects contain other score objects.

>>> tuplet = Tuplet (Multiplier (2, 3), "c’4 d’'4 e’4")
>>> staff = Staff (2 » tuplet)
>>> score = Score([staff])

>>> show (score)

[a] —d3d—= —3i,

Abjad uses the idea of parentage to model the way objects contain each other.

12.7.1 Getting the parentage of a component

Use the inspector to get the parentage of any component:

>>> note = score.select_leaves () [0]
>>> parentage = inspect (note) .get_parentage ()

>>> parentage
Parentage (Note ("c’4"), Tuplet(2/3, [c'4, d'4, e’4]), Staff{2}, Score<<l>>)

Abjad returns a special type of selection.

12.7.2 Parentage attributes

Use parentage to find the immediate parent of a component:

>>> parentage.parent
Tuplet (2/3, [c’4, d’4, e’'4])

Or the root of the score in the which the component resides:

>>> parentage.root
Score<<1l>>

Or to find the depth at which the component is embedded in its score:

>>> parentage.depth
3

Or the number of tuplets in which the component is nested:

>>> parentage.tuplet_depth
1

96 Chapter 12. Working with notation

Abjad Documentation, Release 2.13

12.8 Working with logical voices

12.8.1 What is a logical voice?

A logical voice is a structural relationship. Abjad uses the concept of the logical voice to bind together all the
notes, rests, chords and tuplets that comprise a single musical voice.

It’s important to understand what logical voices are and how they impact the way that you may group notes, rests
and chords together with beams, slurs and other spanners.

12.8.2 Logical voices vs. explicit voices

Logical voices and explicit voices are different things. The staff below contains an explicit voice. You can slur
these notes together because notes contained in an explicit voice always belong to the same logical voice:

>>> voice = Voice("c’8 d’8 e’8 £f'8")

>>> staff Staff ([voicel)

>>> notes = voice.select_leaves|()

>>> slur = spannertools.SlurSpanner ()

>>> slur.attach (notes)
>>> show (staff)

gﬁ 35 :
Here is a staff without an explicit voice. You can slur these notes together because both Abjad and LilyPond
recognize that the notes belong to the same logical voice even though no explicit voice is present:

>>> staff = Staff("g’4 fs’8 e’8")

>>> notes = staff.select_leaves|()

>>> slur = spannertools.SlurSpanner ()
>>> slur.attach (notes)

>>> show (staff)

) .

L=

12.8.3 Different voice nhames determine different logical voices

Now let’s consider a slightly more complex example. The staff below contains two short voices written one after
the other. It’s unusual to think of musical voices as following one after the other on the same staff. But the example
keeps things simple while we explore the way that the names of explicit voices impact Abjad’s determination of
logical voices:

>>> voice_1 = Voice("c’1l6 d’16 e’16 f’16", name='First Short Voice’)
>>> voice_2 = Voice("e’8 d’8", name=’Second Short Voice’)

>>> staff = Staff ([voice_1, voice_2])
>>> show (staff)

L ESeEsSE

You can’t tell that the score above comprises two voices from the notation alone. But the LilyPond input makes
this clear:

>>> f (staff)
\new Staff {

\context Voice = "First Short Voice" {
c’le6

12.8. Working with logical voices 97

Abjad Documentation, Release 2.13

d’1le
e’l6
frle
}
\context Voice = "Second Short Voice" {
e’8
d’s

You can slur together the notes in the first voice:
>>> notes = voice_1l.select_leaves ()
>>> slur = spannertools.SlurSpanner ()

>>> slur.attach (notes)
>>> show (staff)

LESeeTes

And you can slur together the notes in the second voice:

[Tl

>>> notes = voice_2.select_leaves ()
>>> slur = spannertools.SlurSpanner ()
>>> slur.attach (notes)

>>> show (staff)

LEScsres

o —

[Tl

But you can not slur together all the notes in the staff.

Why? Because the six notes in the staff above belong to two different logical voices. Abjad will raise an exception
if you try to slur these notes together. And LilyPond would refuse to render the resulting input code even if you
could.

The important point here is that explicit voices carrying different names determine different logical voices. The
practical upshot of this is that voice naming constrains which notes, rests and chords you can group together with
slurs, beams and other spanners.

12.8.4 Identical voice names determine a single logical voice

Now let’s consider an example in which both voices carry the same name:

>>> voice_1 = Voice("c’’16 b’16 a’l6 g’1l6", name='Unified Voice’)
>>> voice_2 = Voice("fs’8 g’8", name='Unified Voice’)

>>> staff = Staff ([voice_1, voice_2])

>>> show (staff)

mﬁ_—,‘:
el ™

All six notes in the staff now belong to the same logical voice. We can see that this is the case because it’s now
possible to slur all six notes together:

>>> voice_1_notes = voice_1l.select_leaves /()
>>> voice_2_notes = voice_2.select_leaves ()
>>> all_notes = voice_1l_notes + voice_2_notes
>>> slur = spannertools.SlurSpanner ()

>>> slur.attach(all_notes)

>>> show (staff)

98 Chapter 12. Working with notation

Abjad Documentation, Release 2.13

) = —
£Y) "--..___:rr__._.a«;

We can say that this example comprises two explicit voices but only a single logical voice. The LilyPond input
code also makes this clear:

>>> f (staff)
\new Staff {
\context Voice = "Unified Voice" {
c’’16 (
b’16
a’le
g’l6
}
\context Voice = "Unified Voice" {
fs’8
g’'8)

12.8.5 The importance of haming voices

What happens if we choose not to name the explicit voices we create? It is clear that the staff below contains
two explicit voices. But because the explicit voices are unnamed it isn’t clear how many logical voices the staff
defines. Do the notes below belong to one logical voice or two?

>>> voice_1 = Voice("c’8 e’l1l6 fs’1l6")
>>> voice_2 = Voice("g’1l6 gs’1l6 a’l6 as’1l6"
>>> staff = Staff ([voice_1, voice_2])
>>> show (staff)
—
e) -

Abjad defers to LilyPond in answering this question. LilyPond interprets successive unnamed voices as consti-
tuting different voices; Abjad follows this convention. This means that you can slur together the notes in the first
voice. And you can slur together the notes in the second voice. But you can’t slur together all of the notes at once:

>>> voice_1_notes = voice_1l.select_leaves|()
>>> slur = spannertools.SlurSpanner ()

>>> slur.attach(voice_1_notes)

>>> voice_2_notes = voice_2.select_leaves /()
>>> slur = spannertools.SlurSpanner ()

>>> slur.attach(voice_2_notes)

>>> show (staff)

f) —.
| - |
= [=
m— L B
i

oy

This point can be something of a gotcha. If you start working with increasingly fancy ways of structuring your
scores you can easily forget that notes in two successive (but unnamed) voices can not be beamed or slurred
together.

This leads to a best practice when working with Abjad: name the explicit voices you create. The small score
snippets we’ve created for the docs don’t really require that names for voices, staves and scores. But scores used
to model serious music should provide explicit names for every context from the beginning.

12.8. Working with logical voices 99

Abjad Documentation, Release 2.13

100 Chapter 12. Working with notation

Part V

Reference manual

101

CHAPTER
THIRTEEN

LEAVES

13.1 Chords

13.1.1 Making chords from a LilyPond input string

You can make chords from a LilyPond input string:

>>> chord = Chord("<c’ d’ bf’>4")
>>> show (chord)

13.1.2 Making chords from numbers

You can also make chords from pitch numbers and duration:

>>> chord = Chord([0, 2, 10], Duration(l, 4))
>>> show (chord)

13.1.3 Getting all the written pitches of a chord at once

You can get all the written pitches of a chord at one time:

>>> chord.written_pitches
(NamedPitch ("c’ "), NamedPitch ("d’"), NamedPitch ("bf’"))

Abjad returns a read-only tuple of named pitches.

13.1.4 Getting the written pitches of a chord one at a time

You can get the written pitches of a chord one at a time:

>>> chord.written_pitches[0]
NamedPitch ("c’")

Chords index the pitch they contain starting from 0, just like tuples and lists.

103

Abjad Documentation, Release 2.13

13.1.5 Adding one pitch to a chord at a time

Use append () to add one pitch to a chord.
You can add a pitch to a chord with a pitch number:

>>> chord.append (9)
>>> show (chord)

Or you can add a pitch to a chord with a pitch name:

>>> chord.append ("df’ ")
>>> show (chord)

Chords sort their pitches every time you add a new one.

This means you can add pitches to your chord in any order.

13.1.6 Adding many pitches to a chord at once

Use extend () to add many pitches to a chord.
You can use pitch numbers:

>>> chord.extend ([3, 4, 14]
>>> show (chord)

Or you can use pitch names:

>>> chord.extend(["g’’", "af’’""])
>>> show (chord)

b

13.1.7 Deleting pitches from a chord

Delete pitches from a chord with del () :

>>> del (chord[0]
>>> show (chord)

b

Negative indices work too:

104

Chapter 13. Leaves

Abjad Documentation, Release 2.13

>>> del (chord[-1]
>>> show (chord)

13.1.8 Formatting chords

Get the LilyPond input format of any Abjad object with 1ilypond_format:

>>> chord.lilypond_format
"<d’ ef’ e’ a’ bf’ df’’ d’’ g’’>4"

Use £ () as a short-cut to print the LilyPond input format of any Abjad object:

>>> f (chord)
<d’ ef’ e’ a’ bf’ df’'’ d'’ g’'’>4

13.1.9 Working with note heads

Most of the time you will work with the pitches of a chord. But you can get the note heads of a chord, too:

>>> for note_head in chord.note_heads:
note_head

NoteHead ("d’ ")
NoteHead ("ef’ ")
NoteHead ("e’")
NoteHead ("a’"")
NoteHead ("bf’")
NoteHead ("df’’")
NoteHead ("d’ " ")
NoteHead ("g’’")

This is useful when you want to apply LilyPond overrides to note heads in a chord one at a time:

>>> chord[2] .tweak.color = "red’
>>> chord[3] .tweak.color = ’'blue’
>>> chord[4].tweak.color = ’"green’

>>> show (chord)

13.1.10 Working with empty chords

Abjad allows empty chords:

>>> chord = Chord([], Duration(l, 4))

Abjad formats empty chords, too:

>>> f (chord)
<>4

But if you pass empty chords to show () LilyPond will complain because empty chords don’t constitute valid
LilyPond input.

When you are done working with an empty chord you can add pitches back into it chord in any of the ways
described above:

13.1. Chords 105

Abjad Documentation, Release 2.13

>>> chord.extend (["gf/", "df/’", Ugr/v])
>>> show (chord)

13.2 Notes

13.2.1 Making notes from a LilyPond input string

You can make notes from a LilyPond input string:

>>> note = Note ("c’4")
>>> show (note)

13.2.2 Making notes from numbers

You can also make notes from a pitch number and duration:

>>> note = Note (0, Duration(l, 4))
>>> show (note)

13.2.3 Getting and setting the written pitch of notes

Get the written pitch of notes like this:

>>> note.written_pitch
NamedPitch ("c’")

Set the written pitch of notes like this:

>>> note.written_pitch = NamedPitch("cs’")
>>> show (note)

Or this:

>>> note.written_pitch = "d’"
>>> show (note)

Or this:

106

Chapter 13. Leaves

Abjad Documentation, Release 2.13

>>> note.written_pitch = 3
>>> show (note)

13.2.4 Getting and setting the written duration of notes

Get the written duration of notes like this:

>>> note.written_duration
Duration (1, 4)

Set the written duration of notes like this:

>>> note.written_duration = Duration (3, 16
>>> show (note)

13.2.5 Overriding notes

The notes below are black with fixed thickness and predetermined spacing:

>>> staff = Staff("c’'4 d’4 e’4 £'4 g’'4 a’4 g’'2")

>>> slur_1 = spannertools.SlurSpanner (staff[:2])
>>> slur_2 = spannertools.SlurSpanner (staff[2:4])
>>> slur_3 = spannertools.SlurSpanner (staff[4:6])
>>> show (staff)

4} N

o } I | | |

Fal FiE] | | I | |

rj ;.__.r" —_—
v [

You can override LilyPond grobs to change the way notes look:

>>> staff[-1].override.note_head.color = ’'red’
>>> staff[-1].override.stem.color = ’red’
>>> show (staff)

) W T

o I | | |

A F i) .] I]

d-ji_x =
v [

13.2.6 Removing note overrides

Delete grob overrides you no longer want like this:

>>> del (staff[-1].override.stem)
>>> show (staff)

4] o
o f I | | |
Fal i) | | 1 | |
) / =

13.2. Notes 107

Abjad Documentation, Release 2.13

13.3 Rests

13.3.1 Making rests from strings

You can make rests from a LilyPond input string:

>>> rest = Rest (’r8’)
>>> show (rest)

]

13.3.2 Making rests from durations

You can also make rests from a duration:

>>> rest = Rest (Duration(l, 4))
>>> show (rest)

¥

13.3.3 Making rests from other Abjad leaves

You can make rests from other Abjad leaves:

>>> note = Note("d’4..")
>> show (note)

v

1|

v

>> rest = Rest (note)
>> show (rest)

v

¥

13.3.4 Making multi-measure rests

You can create multimeasure rests too:

v

>> multimeasure_rest = resttools.MultimeasureRest ('R1’)
>> show (multimeasure_rest)

v

>>> multimeasure_rest.lilypond_duration multiplier = 4
>>> staff = Staff([multimeasure_rest])
>>> show (staff)

i’:)
"

i

I

I

I

108 Chapter 13. Leaves

Abjad Documentation, Release 2.13

>>> command = marktools.LilyPondCommandMark (' compressFullBarRests’)

>>> command.attach (staff)
LilyPondCommandMark (’ compressFullBarRests’) (Staff{1l})
>>> show (staff)

4

13.3.5 Getting and setting the written duration of rests

Get the written duration of rests like this:

>>> rest.written_duration
Duration (7, 16)

Set the written duration of rests like this:

>>> rest.written_duration = Duration (3, 16
>>> show (rest)

13.3. Rests

109

Abjad Documentation, Release 2.13

110 Chapter 13. Leaves

CHAPTER
FOURTEEN

CONTAINERS

14.1 Containers

14.1.1 Creating containers

Create a container with components:

>>> notes = [Note("ds’16"), Note("cs’16"), Note("e’16"), Note("c’16")]
>>> container = Container (notes)
>>> show (container)

f)

o

A e

Or with a LilyPond input string:

>>> container = Container ("ds’16 cs’16 e’16 c’1l6 d’2 ~ d’'8")
>>> show (container)

4}
—Jf i) r—
 fan T y — —|

e el —o

14.1.2 Selecting music

Slice a container to select its components:

>>> container|:]

SliceSelection (Note ("ds’16"), Note("cs’16"), Note("e’1l6"), Note("c’16"), Note("d’2"), Note("d’'8"))

14.1.3 Inspecting length

Get the length of a container with Python’s built-in 1en () function:

>>> len (container)
6

14.1.4 Inspecting duration

Use the inspector the get the duration of a container:

>>> inspect (container) .get_duration ()
Duration (7, 8)

111

Abjad Documentation, Release 2.13

14.1.5 Adding one component to the end of a container

Add one component to the end of a container with append () :

>>> container.append(Note ("af’32"))
>>> show (container)

(4]
b= —_— \Lﬂh

b fote Ctele—o

14.1.6 Adding many components to the end of a container

Add many components to the end of a container with extend () :

>>> container.extend([Note("c’’”32"), Note("a’32")1])
>>> show (container)

2 e
i) = I
[o . 1 - L } |rli:

H‘#ﬁ q'. ! [— 4

14.1.7 Finding the index of a component

Find the index of a component with index () :

>>> note = container([7]

>>> container.index (note)
7

14.1.8 Inserting a component by index

Insert a component by index with insert ():

>>> container.insert (-3, Note("g’32"))
>>> show (container)

b

F i) T T I i
{ L, W ! ! |

T e —

14.1.9 Removing a component by index

)

Remove a component by index with pop () :

>>> container.pop(-1)
Note ("a’32")
>>> show (container)

112

Chapter 14. Containers

Abjad Documentation, Release 2.13

14.1.10 Removing a component by reference

Remove a component by reference with remove () :

>>> container.remove (container[-1])
>>> show (container)

A N
A o i : | | A

| (an WL W 1 ! 1 % 'huj]L_
ij #. ﬁii qii qﬁ,h___#l

14.1.11 Naming containers

You can name Abjad containers:

>>> flute_staff = Staff("c’8 d’8 e’8 £'8")

>>> flute_staff.name = 'Flute’

>>> violin_staff Staff("c’8 d’8 e’8 f’8"

>>> violin_staff.name = ’'Violin’

>>> staff_group = scoretools.StaffGroup ([flute_staff, violin_staff]
>>> score = Score([staff_groupl])

Container names appear in LilyPond input:

>>> f (score)
\new Score <<
\new StaffGroup <<
\context Staff = "Flute" {
c’8
d’ 8
e’8
f’8
}
\context Staff = "Violin" {
c’8
d’ 8
e’8
f’8

>>
>>

And make it easy to retrieve containers later:

>>> score[’Flute’]
Staff-"Flute" {4}

But container names do not appear in notational output:

>>> show (score)

4]

LE=ese
LESese

14.1.12 Understanding { } and << >>in LilyPond

LilyPond uses curly { } braces to wrap a stream of musical events that are to be engraved one after the other:

14.1. Containers 113

Abjad Documentation, Release 2.13

\new Voice {

e''4
f''4
g''4
g''4
f''4
e''4
d''4

d''4 \fermata

i
| o T | 1 1 i |
LN Tl ¥

LilyPond uses skeleton << >> braces to wrap two or more musical expressions that are to be played at the same
time:

\new Staff <<
\new Voice {

\voiceOne
e''4
f''4
gl'4
gl'4
f''4
e''4
d''4

d''4 \fermata
}

\new Voice {

\voiceTwo
c''4

c''4

b'4

c''4

c''8

b'8

c''4

b'4

b'4 \fermata

>>
o
=S D
ko - 1 1 1 1 1 1 | 1
u |] I] — | I I

The examples above are both LilyPond input.

The most common use of LilyPond { } is to group a potentially long stream of notes and rests into a single
expression.

The most common use of LilyPond << >> is to group a relatively smaller number of note lists together poly-
phonically.

14.1.13 Understanding sequential and simultneous containers

Abjad implements LilyPond { } and << >> in the container is_simultaneous attribute.

Some containers set is_simultaneous to false at initialization:

114 Chapter 14. Containers

Abjad Documentation, Release 2.13

>>> staff = Staff([])
>>> staff.is_simultaneous
False

Other containers set 1s_simultaneous to true:

>>> score = Score([])
>>> score.is_simultaneous
True

14.1.14 Changing sequential and simultaneous containers

Set is_simultaneous by hand as necessary:

>>> voice_1l = Voice(r"e’’4 £'74 g'’4 g'’4 £'74 e'74 d’"4 d’'’4 \fermata")
>>> voice_2 = Voice(r"c’’4 c¢’'’4 b'4 ¢c'’4 ¢'’8 b’'8 ¢’'’4 b'4 b’'4 \fermata")
>>> staff = Staff([voice_1, voice_2])

>>> staff.is_simultaneous = True

>>> marktools.LilyPondCommandMark (' voiceOne’) (voice_1)
LilyPondCommandMark (’ voiceOne’) (Voice{8})

>>> marktools.LilyPondCommandMark (’ voiceTwo’) (voice_2)
LilyPondCommandMark (' voiceTwo’) (Voice{9})

>>> show (staff)

o

J!ll

S e e —
o/

The staff in the example above is set to simultaneous after initialization to create a type of polyphonic staff.

14.1.15 Overriding containers

The symbols below are black with fixed thickness and predetermined spacing:

>>> staff = Staff("c’4 d’4 e’4 £'4 g’'4 a’4 g’'2")

>>> slur_1 = spannertools.SlurSpanner (staff[:2])
>>> slur_2 = spannertools.SlurSpanner (staff[2:4])
>>> slur_3 = spannertools.SlurSpanner (staff[4:6])

>>> show (staff)

:
1
Fal Fif] s I 1 | |
| d =
el

e - — =

But you can override LilyPond grobs to change the look of Abjad containers:

>>> staff.override.staff_symbol.color = ’'blue’
>>> show (staff)
) L
" 4 ; T I I I
Fal L] | | I |
,;j i_ﬁz =
v —

14.1.16 Overriding containers’ contents

You can override LilyPond grobs to change the look of containers’ contents, too:

>>> staff.override.note_head.color = ’red’
>>> staff.override.stem.color = ’red’
>>> show (staff)

14.1. Containers

115

Abjad Documentation, Release 2.13

14.1.17 Removing container overrides

Delete grob overrides you no longer want:

>>> del (staff.override.staff_symbol)
>>> show (staff)

14.2 LilyPond files

14.2.1 Making LilyPond files

Make a basic LilyPond file with the 11 1ypondfiletools package:

>>> staff = Staff("c’4 d’'4 e’4 f£'4")
>>> lilypond_file = lilypondfiletools.make_basic_lilypond_file(staff)

>>> lilypond_file
LilyPondFile (Staff{4})

>>> f(lilypond_file)
% Abjad revision 12391:12394
% 2013-10-18 11:14

\version "2.17.27"
\language "english"

\score {
\new Staff {
c’4
d’ 4
e’ 4
fra

>>> show(lilypond_file)

0

14.2.2 Inspecting header, layout and paper blocks

Basic LilyPond files also come equipped with header, layout and paper blocks:

>>> lilypond_file.header_block
HeaderBlock (1)

>>> lilypond_file.layout_block
LayoutBlock ()

116 Chapter 14. Containers

Abjad Documentation, Release 2.13

>>> lilypond_file.paper_block
PaperBlock ()

14.2.3 Setting global staff size and default paper size

Set default LilyPond global staff size and paper size like this:

>>> lilypond_file.global_staff size = 14
>>> lilypond_file.default_paper_size = "A7’, ’'portrait’

>>> f(lilypond_file)
Abjad revision 12391:12394
% 2013-10-18 11:14

o\

\version "2.17.27"
\language "english"

(set-default-paper-size "A7" ’'portrait)
(set—global-staff-size 14)

\header {
tagline = \markup { }
}

\score {
\new Staff ({
c’4
d’4
e’ 4
fr4

>>> show(lilypond_file)

f

E=SSes

14.2.4 Setting title, subtitle and composer information

Use the LilyPond file header block to set title, subtitle and composer information:

>>> lilypond_file.header_block.title = markuptools.Markup ('Missa sexti tonus’)
>>> lilypond_file.header_block.composer = markuptools.Markup (' Josquin’)

>>> f(lilypond_file)
Abjad revision 12391:12394
% 2013-10-18 11:14

o

\version "2.17.27"
\language "english"

(set-default-paper-size "A7" ’'portrait)
(set—-global-staff-size 14)

\header {
composer = \markup { Josquin }
tagline = \markup { }
title = \markup { Missa sexti tonus }

}

\score {
\new Staff {
c’4
d’ 4
e’ 4

14.2. LilyPond files 117

Abjad Documentation, Release 2.13

£fr4

>>> show (lilypond_file)

e

14.3 Measures

Missa sexti tonus

Josguin

14.3.1 Understanding measures in LilyPond

In LilyPond you specify time signatures by hand and LilyPond creates measures automatically:

\new Staff {
\time 3/8
c'8

H- 00 O 00 O 0o

ime 2/4

OQ.'-h('DLQg'—h(DQ.(DQ.

N DD DD

|

n‘ _I'-F—{::‘.ir —
St

Here LilyPond creates five measures from two time signatures. This happens because behind-the-scenes LilyPond
time-keeping tells the program when measures start and stop and how to draw the barlines that come between
them.

L TRES

14.3.2 Understanding measures in Abjad

Measures are optional in Abjad, too, and you may omit them in favor of time signatures:
>>> staff = Staff("c’8 d’8 e’8 d’8 e’8 f£’8 g’4 e'4 £'4 d'4 c'2")

>>> time_signature_1 = contexttools.TimeSignatureMark ((3, 8))

>>> time_signature_2 = contexttools.TimeSignatureMark ((2, 4))

>>> time_signature_1l.attach(staff)

TimeSignatureMark ((3, 8)) (Staff{ll})

>>> time_signature_2.attach(staff[6])
TimeSignatureMark ((2, 4)) (g’4)

>>> show (staff)

= i —
ﬁ:ﬁiﬁ—d]

But you may also include explicit measures in the Abjad scores you build. The following sections explain how.

118 Chapter 14. Containers

Abjad Documentation, Release 2.13

14.3.3 Creating measures

Create a measure with a time signature and music:

>>> measure = Measure((3, 8), "c’8 d’8 e’8"

>>> f (measure)
{
\time 3/8
c’8
d’s
e’8

}

>>> show (measure)

)
T
R

14.4 Scores

14.4.1 Making a score from a LilyPond input string

You can make an Abjad score from a LilyPond input string:
>>> input = r’’’

.. \new Staff { e’’4 d''8 (c'’8) d'"4 g'4 }
. \new Staff { \clef bass c4 a,4 b,4 e4d }

rror

>>> score = Score (input)

>>> show (score)

0 ——
w7 - dl_
0y, —

14.4.2 Making a score from a list of Abjad components

You can also make a score from a list of other Abjad components:

>>> treble_staff_1
>>> treble_staff_ 2

taff("e’'4 d’4 e’4 £'4 g'1")
taff("c’2. b8 a8 bl")

S
S

>>> score = Score([treble_staff 1, treble_staff_2])

>>> show (score)
0 T
A { [
[fan W W 1 I I o
fi
‘* F) n
[WL D I 1
a7 I [
¢ < g o

14.4. Scores

119

Abjad Documentation, Release 2.13

14.4.3 Understanding the interpreter representation of a score

The interpreter representation of an Abjad score contains three parts:

>>> score
Score<<2>>

Score tells you the score’s class.

3 tells you the score’s length (which is the number of top-level components the score contains).

Curly braces { and } tell you that the music inside the score is interpreted sequentially rather than simultaneously.

14.4.4 Inspecting the LilyPond format of a score

Get the LilyPond input format of any Abjad object with 1i1ypond_format:

>>> score.lilypond_format

"\\new Score <<\n\t\\new Staff {\n\t\te’4\n\t\td’4\n\t\te’4\n\t\tf’4\n\t\tg’1\n\t}\n\t\\new Staff {\n\t\tc’2.

Use £ () as a short-cut to print the LilyPond format of any Abjad object:

>>> f (score)
\new Score <<
\new Staff {
e’4
d’4
e’ 4
fr4
g'l
}
\new Staff {
c’2.
b8
a8
bl

>>

14.4.5 Selecting the music in a score

Slice a score to select its components:

>>> score|:]
SimultaneousSelection (Staff{5}, Staff{4})

Abjad returns a selection.

14.4.6 Inspecting a score’s leaves

Get the leaves in a score with select_leaves ():

>>> score.select_leaves (allow_discontiguous_leaves=True)

Selection (Note ("e’4"), Note("d’4"), Note("e’4"), Note("f’4"), Note("g’1l"), Note("c’'2."),

Abjad returns a selection.

14.4.7 Getting the length of a score

Get the length of a score with len () :

>>> len(score)
2

Note ("b8"),

120 Chapter 14. Containers

Note (7 a8’

Abjad Documentation, Release 2.13

The length of a score is defined equal to the number of top-level components the score contains.

14.4.8 Inspecting duration

Use the inspector to get the duration of a score:

>>> inspect (score) .get_duration()
Duration (2, 1)

14.4.9 Adding one component to the bottom of a score

Add one component to the bottom of a score with append () :
>>> bass_staff = Staff("g4 f4 e4 d4 d1")
>>> bass_clef = contexttools.ClefMark (’'bass’)

>>> bass_clef.attach (bass_staff)
ClefMark ("bass’) (Staff{5})

>>> score.append (bass_staff)

>>> show (score)

4]

—
)

-
e

¢

I
I

T

B

&L
ol
4
d

¢

14.4.10 Finding the index of a score component

Find the index of a score component with index () :

>>> score.index (treble_staff_ 1)
0

14.4.11 Removing a score component by index

Use pop () to remove a score component by index:

>>> score.pop (1)
Staff{4}

>>> show (score)

0
A |

i
[o WL

!

0

14.4. Scores 121

Abjad Documentation, Release 2.13

14.4.12 Removing a score component by reference

Remove a score component by reference with remove () :

>>> gcore.remove (treble_staff 1)

>>> show (score)

et rrs

¢

14.4.13 Inspecting whether or not a score contains a component

Use in to find out whether a score contains a given component:

>>> treble_staff_ 1 in score
False

>>> treble_staff 2 in score
False

>>> bass_staff in score
True

14.4.14 Naming scores

You can name Abjad scores:

>>> score.name = ’'Example Score’

Score names appear in LilyPond input:

>>> f (score)
\context Score = "Example Score" <<
\new Staff {
\clef "bass"
g4
f4
ed
d4
dl

>>

But do not appear in notational output:

>>> show (score)

et rrs

¢

14.5 Staves

14.5.1 Making a staff from a LilyPond input string

You can make a staff from a LilyPond input string:

>>> staff = Staff("c’8 d’8 e’8 £/8 g’8 a’8 b’4 c’'’1")
>>> show (staff)

122 Chapter 14. Containers

Abjad Documentation, Release 2.13

4] _—

— I 1

) - l

14.5.2 Making a staff from a list of Abjad components

You can also make a staff from a list of other Abjad components:

>>> components = [Tuplet (Multiplier(2, 3), "c’4 d’4 e’4"), Note("f’2"), Note("g’1")]
>>> staff = Staff (components)
>>> show (staff)

A —3=

o i € M—m——
GRS
[, +

14.5.3 Understanding the interpreter representation of a staff

The interpreter representation of a staff contains three parts:

>>> staff
Staff{3}

Staff tells you the staff’s class.
3 tells you the staff’s length (which is the number of top-level components the staff contains).

Curly braces { and } tell you that the music inside the staff is interpreted sequentially rather than simultaneously.

14.5.4 Inspecting the LilyPond format of a staff

Get the LilyPond input format of any Abjad object with 1ilypond_format:

>>> staff.lilypond_format
"\\new Staff {\n\t\\times 2/3 {\n\t\tc’4\n\t\td’4\n\t\te’4\n\t}\n\tf’2\n\tg’1\n}"

Use £ () as a short-cut to print the LilyPond format of any Abjad object:

>>> f (staff)

\new Staff {
\times 2/3 {

c’4

d’4

e’4

Q Fh o~
4
= N

14.5.5 Selecting the music in a staff
Slice a staff to select its components:

>>> staff[:]
SliceSelection (Tuplet (2/3, [c’4, d’4, e’4]), Note("f’'2"), Note("g’'1l")

14.5.6 Inspecting a staff’s leaves

Get the leaves in a staff with select_leaves ():

14.5. Staves 123

Abjad Documentation, Release 2.13

>>> staff.select_leaves|()

ContiguousSelection (Note ("c’4"), Note("d’4"), Note("e’4"), Note("f’'2"),

14.5.7 Getting the length of a staff

Note("g’ 1))

The length of a staff is defined equal to the number of top-level components the staff contains.

Get the length of a staff with 1en () :

>>> len(staff)
3

14.5.8 Inspecting duration

Use the inspector to get the duration of a staff:

>>> inspect (staff) .get_duration()
Duration (2, 1)

14.5.9 Adding one component to the end of a staff

Add one component to the end of a staff with append ():

>>> staff.append (Note ("d""2"))
>>> show (staff)

e
=r

You can also use a LilyPond input string:

>>> staff.append("cs’’2")
>>> show (staff)

0 —3

f P
i+] Sl 1)

Ly L] -~ = I['I'HI

Sl IF ' o, —

[= ' !

14.5.10 Adding many components to the end of a staff

Add many components to the end of a staff with extend () :

>>> notes = [Note("e’’8"), Note("d’’8"), Note("c’’4")]
>>> staff.extend(notes)
>>> show (staff)

A —3—
4 P
F) — P—P—p

e e e e e o s el e = e

e/ - ’ !
You can also use a LilyPond input string:
>>> staff.extend("b’8 a’8 g’4"
>>> show (staff)

0 —3— =
o € S—m———) P—P—ﬁ_—.gz

g T, N N I — o T —1

Nl | J = - — | | S— 1

Y, - o I]
124 Chapter 14. Containers

Abjad Documentation, Release 2.13

14.5.11 Finding the index of a component in a staff

Find staff component index with index () :

>>> notes[0]
Note(”e’ ’ 8")

>>> staff.index (notes[0])
5

14.5.12 Removing a staff component by index

Use pop () to remove the last component of a staff:

>>> staff[8]
Note ("b’8")

>>> staff.pop()
Note(”g’ 4")
>>> show (staff)

fi —3 i
o n 1L

y N (E——— — i

(43 . ———— e bl) i
[, - i ¥

14.5.13 Removing a staff component by reference

Remove staff components by reference with remove () :

>>> staff.remove (staff[-1]
>>> show (staff)

A —3—
f 3 1k

i] i [el 1L
0N _ 1 1 [Fa b 1] 1 1 cl
W T 1 [— | — 1 |
(3] - N

14.5.14 Naming staves

You can name Abjad staves:

>>> staff.name = ’'Example Staff’

Staff names appear in LilyPond input:

>>> f (staff)
\context Staff = "Example Staff" {
\times 2/3 {
c’4
d’4
e’ 4

Hh o~
~
N

g'l
dr’2
cs’’2
e’’8
d’’s
c’’4
b’8
}

But not in notational output:

14.5. Staves

125

Abjad Documentation, Release 2.13

>>> show (staff)

fi —3—

o I o

F il] i 1 | | 1L

l{“ L I 1 | - Fas I i} 1 1] | |1
A3 e = —

[-+ | —

14.5.15 Changing the context of a voice

The context of a staff is set to Staf f by default:

>>> staff.context_name
"Staff’

But you can change the context of a staff if you want:

>>> staff.context_name = ’'CustomUserStaff’

>>> staff.context_name
"CustomUserStaff’

>>> f (staff)
\context CustomUserStaff = "Example Staff" {
\times 2/3 {
c’4
d’4
e’d

cs’’2
e’’8
d’’s
c’’4
b’ 8

}

Change the context of a voice when you have defined a new LilyPond context based on a LilyPond staff.

14.5.16 Making parallel voices in a staff

You can make a staff treat its contents as simultaneous with is_simultaneous:

>>> gsoprano_voice = Voice(r"b’4 a’8 g’8 a’4 d’'’4 b'4 g’4 a’2 \fermata")
>>> alto_voice = Voice(r"d’4 d’4 d’4 fs’4 d’4 d’8 e’'8 fs’'2")
>>> soprano_voice.override.stem.direction = Up

>>> alto_voice.override.stem.direction = Down
>>> staff = Staff ([soprano_voice, alto_voice])
>>> staff.is_simultaneous = True
>>> show (staff)
Fal
f L ——t] | |

3
1 | |

T e

14.6 Tuplets

14.6.1 Making a tuplet from a LilyPond input string

You can make an Abjad tuplet from a multiplier and a LilyPond input string:

126 Chapter 14. Containers

Abjad Documentation, Release 2.13

>>> tuplet = Tuplet (Fraction(2, 3), "c’8 d’8 e’8")
>>> show (tuplet)

14.6.2 Making a tuplet from a list of other Abjad components

You can also make a tuplet from a multiplier and a list of other Abjad components:
>>> leaves = [Note("fs’8"), Note("g’8"), Rest('r8’)]

>>> tuplet = Tuplet (Fraction (2, 3), leaves)

>>> show (tuplet)

—3—

14.6.3 Understanding the interpreter representation of a tuplet

The interprer representation of an tuplet contains three parts:

>>> tuplet
Tuplet (2/3, [fs’8, g’8, r8]

Tuplet tells you the tuplet’s class.
2/ 3 tells you the tuplet’s multiplier.

The list [£s’ 8, g’8, r8] shows the top-level components the tuplet contains.

14.6.4 Understanding the string representation of a tuplet

The string representation of a tuplet contains four parts:

>>> print tuplet
{x 3:2 £s'8, g’8, r8 x}

Curly braces { and } indicate that the tuplet’s music is interpreted sequentially instead of simultaneously.

The asterisks denote a fixed-multiplier tuplet.
3: 2 tells you the tuplet’s ratio.

The remaining arguments show the top-level components of tuplet.

14.6.5 Inspecting the LilyPond format of a tuplet

Get the LilyPond input format of any Abjad object with 1i1ypond_format:

>>> tuplet.lilypond_format
"\\times 2/3 {\n\tfs’8\n\tg’8\n\tr8\n}"

Use £ () as a short-cut to print the LilyPond format of any Abjad object:

>>> f (tuplet)
\times 2/3 {
fs’8
g’8
r8

14.6. Tuplets

127

Abjad Documentation, Release 2.13

14.6.6 Selecting the music in a tuplet

Slice a tuplet to select its components:

>>> tuplet|[:]
SliceSelection (Note ("fs’8"), Note("g’8"), Rest(’'r8’))

14.6.7 Inspecting a tuplet’s leaves

Get the leaves in a tuplet with select_leaves ():

>>> tuplet.select_leaves|()
ContiguousSelection (Note ("fs’8"), Note("g’8"), Rest (’r8’))

14.6.8 Getting the length of a tuplet

The length of a tuplet is defined equal to the number of top-level components the tuplet contains.
Get the length of a tuplet with 1len () :

>>> len(tuplet)
3

14.6.9 Inspecting duration

Use the inspector to get the duration of a voice:

>>> inspect (tuplet) .get_duration ()
Duration (1, 4)

14.6.10 Understanding rhythmic augmentation and diminution

A tuplet with a multiplier less than 1 constitutes a type of rhythmic diminution:

>>> tuplet.multiplier
Multiplier (2, 3)

>>> tuplet.is_diminution
True

A tuplet with a multiplier greater than 1 is a type of rhythmic augmentation:

>>> tuplet.is_augmentation
False

14.6.11 Changing the multiplier of a tuplet

You can change the multiplier of a tuplet with multiplier:

>>> tuplet.multiplier = Multiplier (4, 5)
>>> show (tuplet)

—5—
17 1

=

128 Chapter 14. Containers

Abjad Documentation, Release 2.13

14.6.12 Adding one component to the end of a tuplet

Add one component to the end of a tuplet with append:

>>> tuplet.append (Note("e’4."))
>>> show (tuplet)

—a&—

Fif] I |y |

You can also use a LilyPond input string:

>>> tuplet.append ("bf8")
>>> show (tuplet)

14.6.13 Adding many components to the end of a tuplet

Add many components to the end of a tuplet with extend:

>>> notes = [Note("fs’32"), Note("e’32"), Note("d’32"), Rest((l, 32))]
>>> tuplet.extend (notes)
>>> show (tuplet)

[r 5 1

" I (]
FiE] |

You can also use a LilyPond input string:

>>> tuplet.extend("gs’8 a8"
>>> show (tuplet)

(SE=SSS =SSR

14.6.14 Finding the index of a component in a tuplet

Find the index of a component in a tuplet with index () :

>>> notes[1]
Note ("e’” 32")

>>> tuplet.index (notes[1])
6

14.6.15 Removing a tuplet component by index

Use pop () to remove the last component of a tuplet:

>>> tuplet.pop ()
Note ("a8’)
>>> show (tuplet)

14.6. Tuplets

129

Abjad Documentation, Release 2.13

A F__1;| % ; k N
EGREE ,.b_ﬁﬁ%

14.6.16 Removing a tuplet component by reference

Remove tuplet components by reference with remove () :

>>> tuplet.remove (tuplet [3]
>>> show (tuplet)

{) I :

14.6.17 Overriding attributes of the LilyPond tuplet number grob

o

Override attributes of the LilyPond tuplet number grob like this:

>>> string = ‘tuplet-number::calc-fraction-text’
>>> tuplet.override.tuplet_number.text = schemetools.Scheme (string)
>>> tuplet.override.tuplet_number.color = 'red’

We’ll place the tuplet into a Staff object, so that LilyPond does not complain about the overrides we’ve applied,
which lexically cannot appear in a \ score block.

>>> staff = Staff ([tuplet])
>>> show (staff)

i T ! & I-
#ﬁi s ‘L' == j‘:ﬁi:“

See LilyPond’s documentation for lists of grob attributes available.

14.6.18 Overriding attributes of the LilyPond tuplet bracket grob

Override attributes of the LilyPond tuplet bracket grob like this:

>>> tuplet.override.tuplet_bracket.color = ’red’
>>> show (staff)
A T S

See LilyPond’s documentation for lists of grob attributes available.

14.7 Voices

14.7.1 Making a voice from a LilyPond input string

You can make an Abjad voice from a LilyPond input string:

>>> voice = Voice("c’8 d’8 e’8 £’8 g’8 a’8 b’4 c’'’'1")
>>> show (voice)

130 Chapter 14. Containers

Abjad Documentation, Release 2.13

4] _—

— I 1

) - l

14.7.2 Making a voice from a list of other Abjad components

You can also make a voice from a list of other Abjad components:

>>> components = [Tuplet (Fraction(2, 3), "c’4 d’4 e’4"), Note("f’2"), Note("g’1")]
>>> voice = Voice (components)
>>> show (voice)

A —3=

o i € M—m——
GRS
[, +

14.7.3 Understanding the interpreter representation of a voice

The interpreter representation of an Abjad voice contains three parts:

>>> voice
Voice{3}

Voice tells you the voice’s class.
3 tells you the voice’s length (which is the number of top-level components the voice contains).

Curly braces { and } tell you that the music inside the voice is interpreted sequentially rather than simultaneously.

14.7.4 Inspecting the LilyPond format of a voice

Get the LilyPond input format of any Abjad object with 1ilypond_format:

>>> voice.lilypond_format
"\\new Voice {\n\t\\times 2/3 {\n\t\tc’4\n\t\td’4\n\t\te’4\n\t}\n\tf’2\n\tg’1\n}"

Use £ () as a short-cut to print the LilyPond format of any Abjad object:

>>> f (voice)

\new Voice {
\times 2/3 {

c’4

d’4

e’4

Q Fh o~
4
= N

14.7.5 Selecting the music in a voice
Slice a voice to select its components:

>>> voicel[:]
SliceSelection (Tuplet (2/3, [c’4, d’4, e’4]), Note("f’'2"), Note("g’'1l")

14.7.6 Inspecting a voice’s leaves

Get the leaves in a voice with select_leaves ():

14.7. Voices 131

Abjad Documentation, Release 2.13

>>> voice.select_leaves|()
ContiguousSelection (Note("c’4"), Note("d’4"), Note("e’4"), Note("f’2"), Note("g’'1l")

14.7.7 Getting the length of a voice

The length of a voice is defined equal to the number of top-level components the voice contains.
Get the length of a voice with 1len ():

>>> len (voice)
3

14.7.8 Inspecting duration

Use the inspector to get the duration of a voice:

>>> inspect (voice) .get_duration ()
Duration (2, 1)

14.7.9 Adding one component to the end of a voice

Add one component to the end of a voice with append () :

>>> voice.append (Note ("af’2"))
>>> show (voice)

o] —3—=

|

4 l

i PR - L

| i T, W - = |LF#]
“r

G ever

You can also use a LilyPond input string:

>>> voice.append ("bf’2")
>>> show (voice)

f —3 |

! A L]
L] 1 | 1 | -

l{“ L] L | - = | L) "'r

_U Ll

[- v |

14.7.10 Adding many components to the end of a voice

Add many components to the end of a voice with extend () :
>>> notes = [Note("g’4"), Note("f’4")]

>>> voice.extend (notes)
>>> show (voice)

A —3—

Lim

i
| M T W

1 |

1 1
W T IF ')
[&

F= LT,
€

You can also use a LilyPond input string:

>>> voice.extend ("e’4 ef’4"
>>> show (voice)

f —3 | ;

i - T e
i) i L | | 1 L | 1

o1 — pzPf " ” |

‘_U il

[- |

132 Chapter 14. Containers

Abjad Documentation, Release 2.13

14.7.11 Finding the index of a component in a voice

Find the index of a component in a voice with index () :

>>> notes[0]
Note ("g’ 4")

>>> voice.index (notes[0])
5

14.7.12 Removing a voice component by index

Use pop () to remove the last component of a voice:

>>> voice.pop ()
Note ("ef’4")
>>> show (voice)

fi —3= | ;
! i x L1 1 1 i
i) i L | 1 |l L | 1
| Fan T W 1 1 | = | LT L 1
4 7 “» i

14.7.13 Removing a voice component by reference

Remove voice components by reference with remove () :

>>> voice.remove (voice[-1])
>>> show (voice)

f) —3= .
o i I 1
y I ——— 1 b]
(g T w———— o L P~ ——
e/ - v |
14.7.14 Naming voices
You can name Abjad voices:
>>> voice.name = ’Upper Voice’
Voice names appear in LilyPond input:
>>> f (voice)
\context Voice = "Upper Voice" {
\times 2/3 {
c’4
dr 4
e’ 4
}
£72
g'l
af’?2
bf’2
g'4
£74
}
But not in notational output:
>>> show (voice)
f) —3= .
4 " I —
O — 1 > br—PE —1
17 - = [-
e/ - I

14.7. Voices

133

Abjad Documentation, Release 2.13

14.7.15 Changing the context of a voice

The context of a voice is set to ' Voice’ by default:

>>> voice.context_name
"Voice’

But you can change the context of a voice if you want:

>>> voice.context_name = ’SpeciallyDefinedVoice’

>>> voice.context_name
"SpeciallyDefinedVoice’

>>> f (voice)
\context SpeciallyDefinedVoice = "Upper Voice" {
\times 2/3 {
c’4
d’4
e’ 4

}

Change the context of a voice when you have defined a new LilyPond context based on a LilyPond voice.

134

Chapter 14. Containers

CHAPTER
FIFTEEN

ATTACHMENTS

15.1 Annotations

Annotate components with user-specific information.

Annotations do not impact formatting.

15.1.1 Creating annotations

Use mark tools to create annotations:

>>> annotation_1 = marktools.Annotation(’is inner voice’, True)

>>> annotation_1
Annotation(’is inner voice’, True)

15.1.2 Attaching annotations to a component

Attach annotations to any component with attach ():
>>> note = Note("c’4")

>>> annotation_1.attach (note)
Annotation(’is inner voice’, True) (c’4)

>>> annotation_1
Annotation(’is inner voice’, True) (c’4)

>>> annotation_2 = marktools.Annotation(’is phrase-initial’, False)
>>> annotation_2.attach (note)
Annotation(’is phrase—-initial’, False) (c’4)

>>> annotation_2
Annotation (’is phrase-initial’, False) (c’4)

15.1.3 Getting the annotations attached to a component

Use the inspector to get all the annotations attached to a component:

>>> annotations = inspect (note) .get_marks (mark_classes=marktools.Annotation)
>>> for annotation in annotations: annotation

Annotation(’is inner voice’, True) (c’4)
Annotation(’is phrase-initial’, False) (c’4)

135

Abjad Documentation, Release 2.13

15.1.4 Detaching annotations from a component

Use detach () to detach annotations from a component:

>>> annotation_1.detach ()
Annotation(’is inner voice’, True)

>>> annotation_1
Annotation(’is inner voice’, True)

15.1.5 Inspecting the component to which an annotation is attached

Use start_component to inspect the component to which an annotation is attached:

>>> annotation_1.attach (note)
Annotation(’is inner voice’, True) (c’4)

>>> annotation_1.start_component
Note ("c’4")

15.1.6 Inspecting annotation name

Use name to get the name of any annotation:

>>> annotation_1.name
"is inner voice’

15.1.7 Inspecting annotation value

Use value to get the value of any annotation:

>>> annotation_1.value
True

15.1.8 Getting the value of an annotation in a single call

Use the inspector to the get the value of an annotation in a single call:

>>> inspect (note) .get_annotation(’is inner voice’)
True

15.2 Articulations

Articulations model staccato dots, marcato wedges and other symbols. Articulations attach to notes, rests or
chords.

15.2.1 Creating articulations

Use marktools to create articulations:

>>> articulation = marktools.Articulation (’turn’)

>>> articulation
Articulation (’turn’)

136 Chapter 15. Attachments

Abjad Documentation, Release 2.13

15.2.2 Attaching articulations to a leaf

Use attach () to attach articulations to a leaf:

>>> staff = Staff ()

>>> key_signature = contexttools.KeySignatureMark ('g’, ’'major’)

>>> key_signature.attach (staff)

KeySignatureMark (NamedPitchClass ('g’), Mode ('major’)) (Staff{})

>>> time_signature = contexttools.TimeSignatureMark ((2, 4), partial=Duration(l, 8)

>>> time_signature.attach (staff)
TimeSignatureMark ((2, 4), partial=Duration(l, 8)) (Staff{})

>>> staff.extend("d’8 £'8 a’8 d’’8 f£’/’8 gs’4 r8 e’8 gs’8 b’'8 e’'’8 gs’’8 a’4")

>>> articulation.attach(staff[5])
Articulation (’turn’) (gs’4)

>>> show (staff)

(The example is based on Haydn’s piano sonata number 42, Hob. XV1/27.)

15.2.3 Attaching articulations to many notes and chords at once

Write a loop to attach articulations to many notes and chords at one time:
>>> for leaf in staff[:6]:
staccato = marktools.Articulation (’staccato’)

staccato.attach (leaf)

Articulation

("staccato’) (d’8)
Articulation (’staccato’) (£’8)
Articulation (’ staccato’) (a’8)
Articulation (’staccato’) (d’’8)
Articulation (’staccato’) (£’78)
Articulation (' staccato’) (gs’4)

>>> show (staff)

L)] .'{h? Il +
Ty T

:
|

15.2.4 Getting the articulations attached to a leaf

Use the inspector to get the articulations attached to a leaf:

>>> inspect (staff[5]) .get_marks (mark_classes=marktools.Articulation)
(Articulation(’turn’) (gs’4), Articulation(’staccato’) (gs’4))

15.2.5 Detaching articulations from a leaf

Detach articulations with detach () :

>>> articulation.detach ()
Articulation (’turn’)

>>> articulation
Articulation (’turn’)

15.2. Articulations 137

Abjad Documentation, Release 2.13

>>> show (staff)

;%ﬂz - ST o — ==

[:

15.2.6 Detaching all articulations attached to a leaf at once

Write a loop to detach all articulations attached to a leaf:

>>> staff[0]
Note ("d’8")

>>> articulations = inspect (staff[0]) .get_marks (marktools.Articulation)
>>> for articulation in articulations:

articulation.detach ()

Articulation ('’ staccato’)

>>> show (staff)

15.2.7 Inspecting the leaf to which an articulation is attached

Use start_component to inspect the component to which an articulation is attached:

>>> articulation = marktools.Articulation (’turn’)
>>> articulation.attach(staff[-1])
Articulation (’turn’) (a’4)

>>> show (staff)

w_.lhi : WF—‘U -~

>>> articulation.start_component
Note ("a’4")

15.2.8 Understanding the interpreter representation of an articulation that is not

attached to a leaf

The interpreter representation of an articulation that is not attached to a leaf contains three parts:

>>> articulation = marktools.Articulation (’staccato’)

>>> articulation
Articulation (’staccato’)

>>> print repr (articulation)
Articulation (’ staccato’)

Articulation tells you the articulation’s class.
"staccato’ tells you the articulation’s name.

If you set the direction string of the articulation then that will appear, too:

138 Chapter 15. Attachments

Abjad Documentation, Release 2.13

r AT

>>> articulation.direction =

>>> articulation

Articulation (’staccato’, Up)
>>> print repr (articulation)
Articulation (’staccato’, Up)

15.2.9 Understanding the interpreter representation of an articulation that is at-
tached to a leaf

The interpreter representation of an articulation that is attached to a leaf contains four parts:

>>> articulation.attach(staff[-1])
Articulation (’staccato’, Up) (a’4)

>>> articulation

Articulation (’staccato’, Up) (a’4)
>>> print repr (articulation)
Articulation (’staccato’, Up) (a’4)

>>> show (staff)

Pt J E= SEais

Articulation tells you the articulation’s class.

I
e

" staccato’ tells you the articulation’s name.

* ~7 tells you the articulation’s direction string.

(a”4) tells you the component to which the articulation is attached.

If you set the direction string of the articulation to none then the direction will no longer appear:

>>> articulation.direction = None

>>> articulation
Articulation (’staccato’) (a’4)

15.2.10 Understanding the string representation of an articulation

The string representation of an articulation comprises two parts:

>>> str(articulation)
"-\\staccato’

- tells you the articulation’s direction string.

staccato tells you the articulation’s name.

15.2.11 Inspecting the LilyPond format of an articulation

Get the LilyPond input format of an articulation with format:

>>> articulation.lilypond_format
"—\\staccato’

Use £ () as a short-cut to print the LilyPond format of an articulation:

>>> f (articulation)
-\staccato

15.2. Articulations 139

Abjad Documentation, Release 2.13

15.2.12 Controlling whether an articulation appears above or below the staff

Setdirectionto ’ ~’ to force an articulation to appear above the staff:

>>> articulation.direction = "7’/
>>> show (staff)

Setdirectionto ’_’ to force an articulation to appear above the staff:

>>> articulation.direction = 7_’

>>> show (staff)
- _— “1
‘; hTIF 1 . | F#.

¥

j

Set direction to none to allow LilyPond to position an articulation automatically:

>>> articulation.direction = None
>>> show (staff)

2 F"' TI' H r.q_F-#Li'ft_

15.2.13 Getting and setting the name of an articulation

Set the name of an articulation to change the symbol an articulation prints:

>>> articulation.name = ’staccatissimo’
>>> show (staff)

. oo
(11 I; 1] [e

F,-m— ' -ﬂ-‘i?}_y_‘

15.2.14 Copying articulations

Use copy . copy () to copy an articulation:

>>> import copy
>>> articulation_copy_1 = copy.copy (articulation)

>>> articulation_copy_1
Articulation (’ staccatissimo’)

>>> articulation_copy_l.attach(staff[1])
Articulation (’staccatissimo’) (£’8)

>>> show (staff)

he T T o
HTE ge T e C L |

Or use copy .deepcopy () to do the same thing.

et

i

140 Chapter 15. Attachments

Abjad Documentation, Release 2.13

15.2.15 Comparing articulations

Articulations compare equal with equal direction names and direction strings:

>>> articulation.name
"staccatissimo’
>>> articulation.direction

>>> articulation_copy_1l.name
"staccatissimo’
>>> articulation_copy_1l.direction

>>> articulation == articulation_copy_1
True

Otherwise articulations do not compare equal.

15.2.16 Overriding attributes of the LilyPond script grob

Override attributes of the LilyPond script grob like this:

>>> staff.override.script.color = 'red’
>>> show (staff)
. =]
#ﬂn - i f s
O % el v Mg ls
i

See the LilyPond documentation for a list of script grob attributes available.

15.3 Instruments

15.3.1 Initializing instruments

Use instrumenttools to initialize instruments:
>>> violin = instrumenttools.Violin ()

>>> violin
Violin ()

15.3.2 Attaching instruments to a component

Use attach () to attach instruments to a component:

>>> staff = Staff("c’4 d’4 "4 £74")
>>> violin.attach (staff)
Violin () (Staff{4})

>>> show (staff)

o
Fa i+ | 1 I
L]

Violin fAs 1
T

15.3.3 Getting the instrument attached to a component

Use the inspector to get the instrument attached to a component:

15.3. Instruments 141

Abjad Documentation, Release 2.13

>>> inspect (staff) .get_mark (instrumenttools.Instrument)
Violin () (Staff{4})

15.3.4 Getting the instrument in effect for a component

Use the inspector to get the instrument currently in effect for a component:

>>> inspect (staff[1l]) .get_effective_context_mark (instrumenttools.Instrument)
Violin () (Staff{4})

15.3.5 Detaching instruments from a component

Use detach () to detach an instrument from a component:

>>> violin.detach ()
Violin ()
>>> show (staff)

4]

o

i) 5 1

15.3.6 Inspecting the component to which an instrument is attached

Use start_component to inspect the component to which an instrument is attached:

>>> flute = instrumenttools.Flute ()
>>> flute.attach (staff)
Flute () (Staff{4})

>>> show (staff)

)
P—

h¥ 4
Flute {5t~

>>> flute.start_component
Staff{4}

15.3.7 Inspecting the instrument name of an instrument

Use instrument_name to get the name of any instrument:

>>> flute.instrument_name
"flute’

And use instrument_name_markup to get the instrument name markup of any instrument:

>>> flute.instrument_name_markup
Markup ((' Flute’,))

15.3.8 Inspecting the short instrument name of an instrument

Use short_instrument_name to get the short instrument name of any instrument:

>>> flute.short_instrument_name
rfl.7

And use short_instrument_name_markup to get the short instrument name markup of any instrument:

142 Chapter 15. Attachments

Abjad Documentation, Release 2.13

>>> flute.short_instrument_name_markup
Markup (('F1.’,))

15.4 LilyPond command marks

LilyPond command marks allow you to attach arbitrary LilyPond commands to Abjad score components.

15.4.1 Creating LilyPond command marks

Use marktools to create LilyPond command marks:

>>> command = marktools.LilyPondCommandMark ("bar "|[|"’, "after’)

>>> command
LilyPondCommandMark (‘bar "||"")

15.4.2 Attaching LilyPond command marks to Abjad components

Use attach () to attach a LilyPond command mark to any Abjad component:

>>> import copy
>>> staff = Staff([])

>>> key_signature = contexttools.KeySignatureMark (’'f’, ’'major’)
>>> key_signature.attach(staff)
KeySignatureMark (NamedPitchClass (' £’), Mode ('major’)) (Staff{})

>>> staff.extend(p("{ d’’716 (c’’16 fs’’16 g’"16) }"))
>>> staff.extend(p("{ £'716 (e’’16 d’"716 c’'"16) }"))
>>> staff.extend(p("{ cs’’16 (d’’16 £/716 d’"16) }"))
>>> staff.extend(p("{ a’8 b’8 }"))

>>> staff.extend(p("{ d’’16 (c’'’16 £s’’16 g’’16)} "))
>>> staff.extend(p("{ £'716 (e’’16 d’"’16 c’’"16) }"))
>>> staff.extend(p("{ cs’’16 (d’’16 £'716 d’'’16) }"))

>>> staff.extend(p("{ a’8 b’8 c’'’2 }"))

>>> command.attach (staff[-2])
LilyPondCommandMark ("bar "[["") (b’8)

>>> show (staff)

b R Ebe T
ﬁ#*’ Erpatapr e

|
%
)
]

= |
o atar e

s
L 18
=

Sxiar
L 18
TR

15.4.3 Inspecting the LilyPond command marks attached to an Abjad compo-
nent

Use the inspector to get the LilyPond command marks attached to a leaf:

>>> inspect (staff[-2]) .get_marks (marktools.LilyPondCommandMark)
(LilyPondCommandMark (‘bar "|["’) (b’8),)

15.4.4 Detaching LilyPond command marks from a component

Use detach () to detach LilyPond command marks from a component:

>>> command.detach ()
LilyPondCommandMark (‘bar "|[|"")

15.4. LilyPond command marks 143

Abjad Documentation, Release 2.13

>>> command
LilyPondCommandMark (‘bar "|[|"")

>>> show (staff)
f b g e g~ e
. .'_P—p—.:#.,:] #
—1 I i et #

ele |7

———— ey
e

]

15.4.5 Inspecting the component to which a LilyPond command mark is at-
tached

Use start_component to inspect the component to which a LilyPond command mark is attached:

>>> command = marktools.LilyPondCommandMark ("bar "|[|"’, ’“closing’)
>>> command.attach (staff[-2])
LilyPondCommandMark ("bar "|[["") (b’ 8)

>>> show (staff)

A f,#::—-ﬁ —_ lf::___ﬁ ;

EGEESESE SIS0 S
1 I

>>> command.start_component
Note ("b’8")

il

, ie
F T

%{)
i
)|

15.4.6 Getting and setting the command name of a LilyPond command mark

Set the command_name of a LilyPond command mark to change the LilyPond command a LilyPond command
mark prints:

>>> command.command_name = ’"bar "|."’

>>> show (staff)

0 S Re e e o, T S el s e, T
#hﬂq" "_P_P_F#‘IF" g G T ot b 7
£ I I |i L I I 1& L I
:i I
15.4.7 Copying LilyPond commands
Use copy . copy () to copy a LilyPond command mark:
>>> import copy
>>> command_copy_1l = copy.copy (command)
>>> command_copy_1
LilyPondCommandMark (‘bar "|."’")
>>> command_copy_1l.attach(staff[-1])
LilyPondCommandMark (‘bar "|."’) (c’'’2)
>>> show (staff)
H ”’HEE_“ "_-‘Hh“\ o I I ’JF;EE_“ "_-‘HH“‘ i I —I¥
e L L P (P i P ato]

@& . H

Or use copy .deepcopy () to do the same thing.

144 Chapter 15. Attachments

Abjad Documentation, Release 2.13

15.4.8 Comparing LilyPond command marks

LilyPond command marks compare equal with equal command names:

>>> command.command_name
!bar " ‘ nrs

>>> command_copy_1l.command_name
"bar "|."’

>>> command == command_copy_1
True

Otherwise LilyPond command marks do not compare equal.

15.5 LilyPond comments

LilyPond comments begin with the % sign. Abjad models LilyPond comments as marks.

15.5.1 Creating LilyPond comments

Use marktools to create LilyPond comments:

>>> message_
>>> comment_

"This is a LilyPond comment before a note.’

i1 =
1 = marktools.LilyPondComment (message_1, ’'before’)

>>> comment_1
LilyPondComment (' This is a LilyPond comment before a note.’)

15.5.2 Attaching LilyPond comments to leaves

Attach LilyPond comments to a note, rest or chord with attach ():

>>> note = Note("cs’’4")

>>> show (note)

>>> comment_1.attach (note)
LilyPondComment (' This is a LilyPond comment before a note.’) (cs’’4)

>>> f (note)
% This is a LilyPond comment before a note.
cs’’4

You can add LilyPond comments before, after or to the right of any leaf.

15.5.3 Attaching LilyPond comments to containers

Use attach () to attach LilyPond comments to a container:

>>> staff = Staff("c’8 d’8 e’8 £78")

>>> show (staff)

15.5. LilyPond comments

145

Abjad Documentation, Release 2.13

f)
>>> message_l = "Here is a LilyPond comment before the staff.’
>>> message_2 = ’"Here is a LilyPond comment in the staff opening.’
>>> message_3 = ’'Here is another LilyPond comment in the staff opening.’
>>> message_4 = ’'LilyPond comment in the staff closing.’
>>> message_5 = 'LilyPond comment after the staff.’

>>> staff comment_1 = marktools.LilyPondComment (message_1, ’"before’)
>>> staff comment_2 = marktools.LilyPondComment (message_2, ’'opening’)
>>> staff_comment_3 = marktools.LilyPondComment (message_3, ’'opening’)
>>> staff_ comment_4 = marktools.LilyPondComment (message_4, 'closing’)
>>> staff_comment_5 = marktools.LilyPondComment (message_5, 'after’)

>>> staff_comment_1.attach (staff)

LilyPondComment (' Here is a LilyPond comment before the staff.’) (Staff{4})
>>> staff_ comment_2.attach(staff)
LilyPondComment (' Here is a LilyPond comment in the staff opening.’) (Staff{4})

>>> staff_ comment_3.attach(staff)

LilyPondComment (' Here is another LilyPond comment in the staff opening.’) (Staff{4})
>>> staff_ comment_4.attach (staff)

LilyPondComment (/ LilyPond comment in the staff closing.’) (Staff{4})

>>> staff_ comment_5.attach (staff)

LilyPondComment (/ LilyPond comment after the staff.’) (Staff{4})

>>> f (staff)

% Here is a LilyPond comment before the staff.

\new Staff {

Here is a LilyPond comment in the staff opening.

Here is another LilyPond comment in the staff opening.

o

o°

’

Q

0 O O ©

’

(o

’

Hh D

% LilyPond comment in the staff closing.
}

LilyPond comment after the staff.

You can add LilyPond comments before, after, in the opening or in the closing of any container.

15.5.4 Getting the LilyPond comments attached to a component

Use the inspector to get the LilyPond comments attached to a component:

>>> inspect (note) .get_marks (marktools.LilyPondComment)
(LilyPondComment (' This is a LilyPond comment before a note.’) (cs’’4),)

15.5.5 Detaching LilyPond comments from a component

Use detach () to detach LilyPond comments from a component:

>>> comment_1 = inspect (note) .get_marks (marktools.LilyPondComment) [0]

>>> comment_1.detach ()
LilyPondComment (' This is a LilyPond comment before a note.’)

>>> f (note)
cs’’4

15.5.6 Detaching all LilyPond comments attached to a component

Write a loop to detach all LilyPond comments attached to a component:

146 Chapter 15. Attachments

Abjad Documentation, Release 2.13

>>> comments = inspect (staff) .get_marks (marktools.LilyPondComment)
>>> for comment in comments:
print comment

LilyPondComment (' Here is a LilyPond comment before the staff.’) (Staff{4})

(
LilyPondComment (' Here is a LilyPond comment in the staff opening.’) (Staff{4})
LilyPondComment (' Here is another LilyPond comment in the staff opening.’) (Staff{4})
LilyPondComment (/ LilyPond comment in the staff closing.’) (Staff{4})
LilyPondComment (/ LilyPond comment after the staff.’) (Staff{4})

>>> for comment in comments:
comment .detach ()

LilyPondComment (' Here is a LilyPond comment before the staff.’)
LilyPondComment (' Here is a LilyPond comment in the staff opening.’)
LilyPondComment (' Here is another LilyPond comment in the staff opening.’)
LilyPondComment (/ LilyPond comment in the staff closing.’)
LilyPondComment (' LilyPond comment after the staff.’)

>>> f (staff)
\new Staff {
c’8
d’s
e’8
fr8

15.5.7 Inspecting the component to which a LilyPond comment is attached

Use start_component to inspect the component to which a LilyPond comment is attached:

>>> comment_1.attach (note)
LilyPondComment (' This is a LilyPond comment before a note.’) (cs’’4)

>>> comment_1.start_component
Note ("cs’ 4"

15.5.8 Inspecting the contents string of a LilyPond comment

Use contents_string to inspect the written contents of a LiliyPond comment:

>>> comment_1.contents_string
"This is a LilyPond comment before a note.’

15.6 Spanners

15.6.1 Overriding spanners

The symbols below are black with fixed thickness and predetermined spacing:

>>> staff = Staff("c’4 d’4 e’4 £74 g'4 a’4 g’'2")

>>> slur_1 = spannertools.SlurSpanner ()
>>> slur_1l.attach(staff[:2])

>>> slur_2 = spannertools.SlurSpanner ()
>>> slur_2.attach(staff[2:4]

>>> slur_3 = spannertools.SlurSpanner ()
>>> slur_3.attach(staff[4:6])

15.6. Spanners 147

Abjad Documentation, Release 2.13

>>> show (staff)

But you can override LilyPond grobs to change the look of spanners:

"red’
"red’

>>> slur_1l.override.slur.color
>>> slur_3.override.slur.color

>>> show (staff)

) T
Fal Fif] I i-xf | |

[

e

15.6.2 Overriding the components to which spanners attach

You can override LilyPond grobs to change spanners’ contents:

>>> slur_2.override.slur.color = ’"blue’
>>> slur_2.override.note_head.color = ’"blue’
>>> slur_2.override.stem.color = ’'blue’

>>> show (staff)

15.6.3 Removing spanner overrides

Delete grob overrides you no longer want:

>>> del (slur_1.override.slur)
>>> del (slur_3.override.slur)

>>> show (staff)

148 Chapter 15. Attachments

CHAPTER
SIXTEEN

16.1 Named pitches

Named pitches are the everyday pitches attached to notes and chords:

>>> note = Note("cs’’8")
>>> show (note)

>>> note.written_pitch
NamedPitch ("cs’’™")

16.1.1 Creating named pitches

Create named pitches like this:

>>> named_pitch = NamedPitch ("cs’’")

>>> named_pitch
NamedPitch ("cs’’")

16.1.2 Inspecting the name of a named pitch

Use str () to get the name of named pitches:

>>> str (named_pitch)
"CS' rn

16.1.3 Inspecting the octave of a named pitch
Get the octave number of named pitches with octave_number:

>>> named_pitch.octave_number
5

16.1.4 Sorting named pitches

Named pitches sort by octave, diatonic pitch-class and accidental:

>>> pitchtools.NamedPitch(’es’) < pitchtools.NamedPitch(’ff’)

True

PITCHES

149

Abjad Documentation, Release 2.13

16.1.5 Comparing named pitches

You can compare named pitches to each other:

>>> named_pitch_1 = pitchtools.NamedPitch("c’’")
>>> named_pitch_2 = pitchtools.NamedPitch("d’’")

>>> named_pitch_1 == named_pitch_2
False
>>> named_pitch_1 != named_pitch_2
True

>>> named_pitch_1 > named_pitch_2
False

>>> named_pitch_1 < named_pitch_2
True

>>> named_pitch_1 >= named_pitch_2
False

>>> named_pitch_1 <= named_pitch_2
True

16.1.6 Converting a named pitch to a numbered pitch

Convert a named pitch to a numbered pitch like this:

>>> named_pitch.numbered_pitch
NumberedPitch (13)

Or like this:

>>> pitchtools.NumberedPitch (named_pitch)
NumberedPitch (13)

16.1.7 Converting a named pitch to a named pitch-class

Convert a named pitch to a named pitch-class like this:

>>> named_pitch.named_pitch_class
NamedPitchClass (’cs’)

Or like this:

>>> pitchtools.NamedPitchClass (named_pitch)
NamedPitchClass (' cs’)

16.1.8 Converting a named pitch to a numbered pitch-class

Convert a named pitch to a numbered pitch-class like this:

>>> named_pitch.numbered_pitch_class
NumberedPitchClass (1)

Or like this:

>>> pitchtools.NumberedPitchClass (named_pitch)
NumberedPitchClass (1)

150 Chapter 16.

Pitches

Abjad Documentation, Release 2.13

16.1.9 Copying named pitches

Use copy . copy () to copy named pitches:

>>> import copy

>>> copy.copy (named_pitch)
NamedPitch ("cs’’ ")

Or use copy .deepcopy () to do the same thing.

16.1. Named pitches

151

Abjad Documentation, Release 2.13

152 Chapter 16. Pitches

Part VI

Developer documentation

153

CHAPTER
SEVENTEEN

READING AND WRITING CODE

17.1 Codebase

17.1.1 How the Abjad codebase is laid out

The Abjad codebase comprises a small number of top-level directories:

abjad$ 1ls -x -F

__init__ .py __init__ .pyc _version.py _version.pyc cfg/
demos/ docs/ etc/ ly/ scr/
tools/

Of these, it is in the tools directory that the bulk of the musical reasoning implemented in Abjad resides:

abjad$ 1ls -x —-F tools/

__init__.py __init__.pyc abctools/
abjadbooktools/ chordtools/ componenttools/
configurationtools/ containertools/ contexttools/
datastructuretools/ decoratortools/ developerscripttools/
documentationtools/ durationtools/ exceptiontools/
formattools/ importtools/ instrumenttools/
introspectiontools/ iotools/ iterationtools/
labeltools/ layouttools/ leaftools/
lilypondfiletools/ lilypondparsertools/ lilypondproxytools/
marktools/ markuptools/ mathtools/
measuretools/ mutationtools/ notetools/
pitcharraytools/ pitchtools/ quantizationtools/
resttools/ rhythmmakertools/ rhythmtreetools/
schemetools/ scoretemplatetools/ scoretools/
selectiontools/ sequencetools/ sievetools/
skiptools/ spannertools/ stafftools/
stringtools/ tempotools/ testtools/
timeintervaltools/ timerelationtools/ timesignaturetools/
timespantools/ tonalanalysistools/ tuplettools/
updatetools/ voicetools/ wellformednesstools/

The remaining sections of this chapter cover the topics necessary to familiarize developers coming to the project
for the first time.

17.1.2 Removing prebuilt versions of Abjad before you check out

If you’d like to be at the cutting edge of the Abjad development you first need to check the project out from
Google Code, and then teach Python and your operating system about Abjad. You can do this by following the
steps below.

But before you do this you should realize that there are two ways to get Abjad up and running on your computer.
The first way is by downloading a compressed version of Abjad from the Python Package Index. You probably
did this when you first discovered Abjad and started to use the system. The second way is by following the steps
below to check out a copy of the most recent version of the Abjad repository hosted on Google Code. If you
already have a version of Abjad running on your computer but you haven’t yet followed the steps below to check

155

http://pypi.python.org/pypi/Abjad/

Abjad Documentation, Release 2.13

out from Google Code, then you probably downloaded a compressed version of Abjad from the Python Package
Index.

Before you check out from Google Code you should remove all prebuilt versions of Abjad from your ma-
chine.

The reason you need to do this is that having both a prebuilt version of Abjad and a Subversion-managed version
of Abjad on your machine can confuse your operating system and lead to weird results when you try to start Abjad.

If you installed Abjad via pip, you can simply say:

S sudo pip uninstall abjad

to remove Abjad in one step. We recommend this as the simplest way of installing and uninstalling the packaged
version of Abjad. You can download pip from https://pypi.python.org/pypi/pip.

If you are unable or uninterested in uninstalling the packaged version of Abjad automatically with pip, you’ll
have to uninstall manually.

To remove prebuilt versions of Abjad resident on your computer manually, you need to find your site packages
directory and remove the so-called Abjad ‘egg’ that Python has installed there. After you remove the Abjad egg
from your site packages directory you will also need to remove the abj, abjad and abjad-book scripts from
/usr/local/bin or from the directory that is equivalent to /usr/local/bin under your opearting system.

First note the version of Python you’re currently running:

abjad$ python --version
Python 2.7.5

This is important because you may have more than one version of Python installed on your machine. (Which tends
especially to be the case if you’re running a Apple’s OS X.)

Then note that the site packages directory is a part of your filesystem into which Python installs third-party Python
packages like Abjad. The location of the site packages directory varies from one operating system to the next
and you may have to Google to find the exact location of the site packages directory on your machine. Under OS
X you can check /Library/Python/2.x/site-packages/. Under Linux the site packages directory is
usually /usr/lib/python2.x/site-packages.

Once you’ve found your site packages directory you can list its contents to see if Python has installed an Abjad
egg in it:

site-packages$ 1ls

Abjad-2.0-py2.6.egg Sphinx-1.0.7-py2.6.egg py-1.3.4-py2.6.egg
Jinja2-2.5-py2.6.egg docutils-0.7-py2.6.egg py-1.4.0-py2.6.egg
Pygments-1.3.1-py2.6.egg easy-install.pth py-1.4.4-py2.6.egg
README guppy pytest-2.0.0-py2.6.egg
Sphinx-1.0.1-py2.6.egg guppy-0.1.9-py2.6.egg-info pytest-2.1.0-py2.6.egg
Sphinx-1.0.4-py2.6.egg py-1.3.1-py2.6.egg

Remove any Abjad eggs Python has installed in your site packages directory.

After you’ve done this you should check /usr/local/bin or equivalent to see if the abj, abjad or
abjad-book scripts are installed there:

binS$ 1s
abj abjad abjad-book
Remove any of the three scripts you find installed there so that you can use the new versions of the scripts you

will download from Google Code instead:

bin$ sudo rm abjx

Now proceed to the steps below to check out from Google Code.

156 Chapter 17. Reading and writing code

https://pypi.python.org/pypi/pip

Abjad Documentation, Release 2.13

17.1.3 Installing the development version
Follow the steps listed above to remove prebuilt versions of Abjad from your machine. Then follow the steps
below to check out from Google Code.

1. Make sure Subversion is installed on your machine:

svn —--version

If Subversion responds then it is already installed. Otherwise visit the Subversion website.
2. Check out a copy of the main line of the Abjad codebase:

svn checkout http://abjad.googlecode.com/svn/abjad/trunk abjad-trunk

3. Add the abjad trunk directory to your your PYTHONPATH environment variable:

export PYTHONPATH="/path/to/abjad-trunk:"S$SPYTHONP

4. Alternatively you may symlink your Python site packages directory to the abjad trunk directory:

In -s /path/to/abjad-trunk /path/to/site-package/abjad

5. Finally, add abjad-trunk/scr/ to your PATH environment variable:

export PATH="/path/to/abjad-trunk/scr:"SPATH

You will then be able to run Abjad with the ab jad command.

You now have a copy of the main line of the most recent version of the Abjad repository checked out to your
machine.

17.2 Coding standards

Abjad’s coding standards are rigorous, but unambiguous. Code should be written in a clear and consistent manner.
This allows not only for long-term legibility, but also facilitates our large collection of codebase tools, which we
use to refactor and maintain the system.

We follow PEP8 whenever possible, and our coding standards are quite similar to Google’s, which should be
considered required reading.

17.2.1 General philosophy

Public is better than private. Explicit is better than implicit. Brevity is almost always acquired along with ambi-
guity. You’re probably only going to type it once, so why make it vaguer than it needs to be? Clarity in purpose
and style frees us up to think about more important things... like making music. With that in mind, let’s keep our
code as clear as possible.

17.2.2 Codebase layout

Avoid private classes.

Avoid private functions. (But use private class methods as necessary.)
Implement only one statement per line of code.

Implement only one class per module.

Implement only one function per module.

17.2. Coding standards 157

http://subversion.tigris.org
http://www.python.org/dev/peps/pep-0008/
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html

Abjad Documentation, Release 2.13

17.2.3 Tests

Author one py . test test file for every module-level function.
Author one py . test test file for every bound method in the public interface of a class.

Author one doctest for every public function, method or property.

17.2.4 Casing and naming

Name classes in upper camelcase:

def FooBar (object) :

Name bound methods in lower snakecase:
def Foo (object) :

def bar_blah(self):

def bar_baz (self):

Name module-level functions in lower snakecase:

def foo_bar():

def foo_blah():

Name all variables in lower snakecase:

variable_one = 1
variable_two = 2

Do not abbreviate variable names, but do use expr for ‘expression’, i or j for loop counters, and x for list
comprehensions:

def foo (expr):
result = []
for i in range(7):
for j in range(23):
result.extend(x for x in expr[i][]])

Name variables that represent a list or other collection of objects in the plural:
some_strings = (

"one’,

"two’,

"three'’,

)

Name functions beginning with a verb. (But use noun_to_noun for conversion functions and
mathtools.noun for some mathtools functions.)

Preceed private class attributes with a single underscore.

17.2.5 Imports

Avoid from. Instead of from fractions import Fraction use:

import fractions

158 Chapter 17. Reading and writing code

Abjad Documentation, Release 2.13

and then qualify the desired classes and functions with the imported module:

my_fraction = fractions.Fraction (23, 7)

Favor early imports at the head of each module. Only one import per line.
Arrange standard library imports alphabetically at the head of each module:

import fractions
import types

Follow standard library imports with intrapackage Abjad imports arranged alphabetically:
import footools

import bartools
import blahtools

Include two blank lines after import statements before the rest of the module:
import fractions

import types

import footools

import bartools

import blahtools

class Foo (object) :

Use late imports to prevent circular imports problems, especially when importing functionality from within the
same tools package.

17.2.6 Whitespace and indentation

Indent with spaces, not with tabs. Use four spaces at a time:

def foo(x, y):
return x + y

When enumerating lists, tuples or dictionaries, place each item on its own line, with every item having a trailing
comma. Place the final brace on its own line, indented like this:

my_tuple = (
’one’,
"two’,
"three’,

)
my_dictionary = {
"bar’: 2,
"baz’: 3,
"foo’: 1,

}

When a function or method call contains many arguments, prefer to place each argument on its own line as well,
with trailing parenthesis:

result = my_class.do_something(
expr,
keyword_1=True,
keyword_2=True,
keyword_3=True,

)

Note: Python (unlike PHP, Java, Javascript etc.) allows for final trailing commas in collections and argument
lists. We take advantage of this by placing each item on its own line whenever possible, along with its own trailing
comma.

17.2. Coding standards 159

Abjad Documentation, Release 2.13

Why? It actually helps us read and write more code.

When adding, subtracting or reordering items in a collection or argument list defined across multiple lines, we
never have to think about which item needs to have a comma added, and which needs to have one removed.
Similarly, the resulting diffs are much simpler to read. If you keep everything on the same line, the diff will show
that the entire line has changed, and you’ll have to take time carefully comparing the old and new version to see
what (if anything) has been altered. When each item has its own line, the diff will show only the insertion or
deletion of a single item.

Use one space around operators:

14 i

instead of:

1+1

Use no spaces around the = for keyword arguments:

my_function (keyword=argument)

instead of:

my_function (keyword = argument)

17.2.7 Line length

Prefer 80 characters whenever possible.
Limit docstring lines to 99 characters.

Limit source lines to 110 characters and use \ to break lines where necessary.

17.2.8 Comments

Introduce comments with one pound sign and a single space:
comment before foo

def foo(x, y):
return x + y

Avoid inline comments.

17.2.9 Docstrings

Wrap docstrings with triple apostrophes and align like this:

def foo(x, y):
r’’’This is the first line of the foo docstring.

This 1is the second line of the foo docstring.

And this is the last line of the foo docstring.
rr

Start each docstring with a single sentence explaining, in brief, what the class, function, method or property does.

For class docstrings, and class properties, the article and noun is sufficient, but for methods use a verb, unless that
verb is “returns’:

class NamedPitch (Pitch) :
r’’’A named pitch.

rrs

160 Chapter 17. Reading and writing code

Abjad Documentation, Release 2.13

@property
def accidental (self):
r’’’An accidental.

rrs

def transpose(self, expr):
r’’’Transpose by ‘expr'.

rrs

Phrase predicate docstrings like this:

class Gesture (object) :

def is_pitched(self):
r’’’True if gesture is pitched, otherwise false.

rrs

17.2.10 Quotation

Use paired apostrophes to delimit strings:

s = "foo’

Use paired quotation marks to delimit strings within a string:

s = "foo and "bar"’

17.2.11 Functions and methods

Alphabetize keyword arguments:
my_function (one=1, three=3, two=2)

my_function (one=1, two=2, three=3)

Always include keyword argument names explicitly in function calls:

my_function (expr, one=1, three=3, two=2)

But not:

my_function (expr, 1, 3, 2)

Note: Python let’s you write out the arguments to a function or method as though they were all positional:

def foo (expr, first=None, second=None, third=None) :

foo(expr, 1, 2, 3)

Do not do this.

We ask that keyword arguments are always named explicitly because it makes function calls completely unam-
biguous, and therefore make it easier to refactor using automated tools. In the above function definition, what is
our cognitive burden if we realize we need to rename the keyword third to alpha, but we haven’t named the
keywords explicitly in our use of the function?

17.2. Coding standards 161

Abjad Documentation, Release 2.13

def foo(expr, first=None, second=None,

The old function call foo (expr,

alpha=None) :

3) will still work correctly, because we haven’t reordered the key-

words in the function’s signature. But that’s burdensome for us, as we’re now relying not on the lexical ordering
of the keyword names, but on their position. They might as well be positional arguments. Don’t do this! Always
explicitly name your keyword arguments, and assume that they can and will be renamed and re-alphabetized at
any time. Typing a few extra character is not a burden, but intuiting context while proofreading old code is.

17.2.12 Classes and class file layout

Organize the definitions of classes into the seven following major sections, omitting sections if they contain no

class members:
class FooBar (object) :
CLASS VARIABLES

special_enumeration = (
"foo’,

def _ init__ (self, x, y):

SPECIAL METHODS

def _ repr_ (self):
def _ str_ (self):

PRIVATE PROPERTIES
@apply
def _bar()

def fget (self):

def fset(self, expr):

return property (xxlocals())

@property
def _foo(self):
PRIVATE METHODS

def _blah(self, x, y):

PUBLIC PROPERTIES
@property

def baz (self):

@apply
def quux():
def fget (self):

def fset(self, expr):

162

Chapter 17. Reading and writing code

Abjad Documentation, Release 2.13

return property (xxlocals())
PUBLIC METHODS

def wux(self, expr, keyword=None) :

Separate bound method definitions with a single empty line:

class FooBar (object) :

def __ _init__ (self, x, y):
def bar_blah(self):

def bar_baz (self):

Alphabetize method names.

17.2.13 Operators

Use < less-than signs in preference to greater-than signs:

if x <y < z:

17.2.14 Misc

Eliminate trivial slice indices. Use s[:4] instead of s[0:4].

Prefer new-style string formatting to old-style string interpolation. Use ’string {}

Q

content’ .format (expr) instead of ' string %s content’ % expr.

Prefer list comprehensions to filter (), map () and apply ().

17.3 Docs

The reST-based sources for the Abjad documentation are included in their entirety in every installation of Abjad.
You may add to and edit these reST-based sources as soon as you install Abjad. However, to build human-readable
HTML or PDF versions of the docs you will first need to download and install Sphinx.

The remaining sections of this chapter describe how the Abjad docs are laid out and how to build the docs with
Sphinx.

17.3.1 How the Abjad docs are laid out

The source files for the Abjad docs are included in the docs directory of every Abjad install. The docs directory
contains everything required to build HTML, PDF and other versions of the Abjad docs:

abjad$ 1ls -x —-F docs/

Makefile __init__ .py __init__ .pyc build/ make.bat
pdf/ source/

The documentation sourcefiles are collected in section directories resident in docs/source/:

17.3. Docs 163

Abjad Documentation, Release 2.13

abjad$ 1ls -x -F docs/source/

__init__ .py __init__ .pyc

_ext/ _static/

_templates/ _themes/

api/ appendices/

conf.py conf.pyc

contents.rst developer_documentation/
examples/ in_conversation/

index.rst mothballed/
reference_manual/ start_here/
system_overview/ tutorials/

The nine section directories in docs/source mirror the frontpage sections of the Abjad documentation. There
are section directories for the start here, system overview, examples, tutorials, reference manual, developer docu-
mentation, appendices, and api and “in conversation” sections of documentation.

When you look inside a section directory you’ll find a collection of chaper directories.
Here are the reference manual chapter directories:

abjad$ 1ls -x -F docs/source/reference_manual

annotations/ articulations/ chords/
containers/ index.rst instruments/
lilypond_command_marks/ lilypond_comments/ lilypond_files/
measures/ named_pitches/ notes/

rests/ scores/ spanners/
staves/ tuplets/ voices/

And when you look inside a chapter directory you’ll find an .rst.raw file, and .rst file and an images/
directory:

abjad$ 1ls -x -F docs/source/reference_manual/notes
images/ index.rst index.rst.raw

17.3.2 Installing Sphinx

Sphinx is the automated documentation system used by Python, Abjad and other projects implemented in Python.
Because Sphinx is not included in the Python standard library you will probably need to download and install it.
First check to see if Sphinx is already installed on your machine:

abjad$ sphinx-build --version

Sphinx v1.1.3
Usage: /usr/local/bin/sphinx-build [options] sourcedir outdir [filenames...]

Options: -b <builder> -- builder to use; default is html
-a -— write all files; default is to only write new and changed files
-E —— don’t use a saved environment, always read all files
-t <tag> -- include "only" blocks with <tag>
—-d <path> -- path for the cached environment and doctree files
(default: outdir/.doctrees)
—-c <path> -- path where configuration file (conf.py) is located
(default: same as sourcedir)
-C -- use no config file at all, only -D options
-D <setting=value> -- override a setting in configuration
—-A <name=value> —-— pass a value into the templates, for HTIML builder
-n —- nit-picky mode, warn about all missing references
-N —— do not do colored output
—-q —-- no output on stdout, just warnings on stderr
=0) -- no output at all, not even warnings
-w <file> -- write warnings (and errors) to given file
-W —— turn warnings into errors
-P —— run Pdb on exception
Modi:

* without -a and without filenames, write new and changed files.
* with -a, write all files.
* with filenames, write these.

If Sphinx responds then the program is already installed on your machine. Otherwise visit the Sphinx website.

164 Chapter 17. Reading and writing code

http://sphinx.pocoo.org/examples.html
http://sphinx.pocoo.org/

Abjad Documentation, Release 2.13

17.3.3 Using ajv api
The a jv application ships with Abjad. The application helps developers manage the Ajbad codebase. The a jv
subcommand api allows for building and cleaning various formats of Sphinx documentation.

abjad$ ajv api --help
usage: build-api [-h] [--version] [-M] [-X] [-C] [-O] [--format FORMAT]

Build the Abjad APIs.

optional arguments:

-h, —--help show this help message and exit

—-version show program’s version number and exit

-M, —--mainline build the mainline API

-X, ——experimental Dbuild the experimental API

-C, --clean run "make clean" before building the api

-0, —--open open the docs in a web browser after building
——format FORMAT Sphinx builder to use

17.3.4 Removing old builds of the documentation

To remove old builds of the documentation, use the clean command:

abjad$ ajv api --clean

17.3.5 Building the HTML docs

You can use a jv to build the HTML docs. It doesn’t matter what directory you’re in when you run the following
command:

abjad$ ajv api -M
Now writing ReStructured Text files

done.
Now building the HTML docs

sphinx-build -b html -d build/doctrees source build/html

Making output directory...

Running Sphinx v1.1.3

loading pickled environment... not yet created

loading intersphinx inventory from http://docs.python.org/2.7/objects.inv...
building [html]: targets for 1131 source files that are out of date

updating environment: 1131 added, 0 changed, 0 removed

reading sources... 1%] api/demos/part/PartCantusScoreTemplate/PartCantusScore

[
reading sources... [4%] api/tools/abjadbooktools/AbjadBookProcessor/AbjadBookP
reading sources... [4%] api/tools/abjadbooktools/AbjadBookScript/AbjadBookScri
reading sources... [4%] api/tools/abjadbooktools/HTMLOutputFormat/HTMLOutputFo
reading sources... [4%] api/tools/abjadbooktools/LaTeXOutputFormat/LaTeXOutput
reading sources... [4%] api/tools/abjadbooktools/ReSTOutputFormat/ReSTOutputFo
reading sources... [5%] api/tools/chordtools/Chord/Chord
copying images... [89%] reference_manual/lilypond_command_marks/images/index-2.
copying images... [93%] tutorials/understanding_time_signature_marks/images/ind
copying images... [94%] tutorials/working_with_threads/images/thread-resolution
copying images... [100%] reference_manual/staves/images/index-8.png
copying static files... done
dumping search index... done
dumping object inventory... done

build succeeded.

Build finished. The HTML pages are in build/html.

You will then find the complete HTML version of the docs in the docs/build/html/ directory:

17.3. Docs 165

Abjad Documentation, Release 2.13

abjad$ 1ls docs/build/
doctrees
latex

The output from Sphinx is verbose the first time you build the docs. On sequent builds, Sphinx reports changes
only:

abjad$ ajv api -M
Now writing ReStructured Text files

done.
Now building the HTML docs
sphinx-build -b html -d build/doctrees source build/html
Running Sphinx v1.1.3
loading pickled environment... done
building [html]: targets for 0 source files that are out of date
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found

no targets are out of date.

Build finished. The HTML pages are in build/html.

17.3.6 Building a PDF of the docs

Building a PDF of the docs is almost as simple as building the HTML documentation:

abjads ajv api -M --format latexpdf
Now writing ReStructured Text files

done.
Now building the LATEXPDF docs

sphinx-build -b latex -d build/doctrees source build/latex
Running Sphinx v1.2bl

loading pickled environment... done

building [latex]: all documents

updating environment: 0 added, 1 changed, 0 removed
reading sources... [100%] developer_documentation/index
looking for now-outdated files... 10 found

pickling environment... done

checking consistency... done

processing Abjad.tex..

Transcript written on AbjadAPI.log.
pdflatex finished; the PDF files are in build/latex.

The resulting docs will appear as Abjad.pdf and AbjadAPI.pdf in the LaTeX build directory,
docs/build/latex.

17.3.7 Building a coverage report

Build the coverage report with ajv api and the coverage format.

abjad$ ajv api -M --format coverage
Now writing ReStructured Text files

done.
Now building the COVERAGE docs

Running Sphinx v1.2bl
loading pickled environment... done

166 Chapter 17. Reading and writing code

Abjad Documentation, Release 2.13

building [coverage]: coverage overview

updating environment: 0 added, 1 changed, 0 removed

reading sources... [100%] api/tools/developerscripttools/BuildApiScript/BuildApiScript
looking for now-outdated files... none found

pickling environment... done

checking consistency... done

build succeeded.

The coverage report is now available in the docs/build/coverage directory:

docsS 1s build/
coverage doctrees html

17.3.8 Building other versions of the docs

Examine the Sphinx makefile in the Abjad docs/ directory or change to the docs/ directory and type make
with no arguments to see a list of the other versions of the Abjad docs that are available to build:

docsS make

Please use "make <target>" where <target> is one of

html to make standalone HTML files

dirhtml to make HTML files named index.html in directories
singlehtml to make a single large HTML file

pickle to make pickle files

json to make JSON files

htmlhelp to make HTML files and a HTML help project

agthelp to make HTML files and a gthelp project

devhelp to make HTML files and a Devhelp project

epub to make an epub

latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter
latexpdf to make LaTeX files and run them through pdflatex

text to make text files

man to make manual pages

texinfo to make Texinfo files

info to make Texinfo files and run them through makeinfo
gettext to make PO message catalogs

changes to make an overview of all changed/added/deprecated items
linkcheck to check all external links for integrity

doctest to run all doctests embedded in the documentation (if enabled)
book to run abjad-book on all ReST files in source

17.3.9 Inserting images with abjad-book

Use ajv book to insert snippets of notation in the docs you write in reST.

Embed Abjad code between open and close <abjad> </abjad> tags in your . rst.raw sourcefile and then call
abjad-book to create a pure . rst file:

abjad$ ajv book foo.rst.raw
Parsing file

Rendering "example-1.1ly"
Rendering "example-2.1ly"

You will need to build the HTML docs again to see your work:

abjad$ ajv api -M

17.3.10 Updating Sphinx

It is important periodically to update your version of Sphinx. If you used pip to install Sphinx then the usual
command to update Sphinx is this:

17.3. Docs 167

Abjad Documentation, Release 2.13

abjads sudo pip install --upgrade Sphinx

17.4 Tests

Abjad includes an extensive battery of tests. Abjad is in a state of rapid development and extension. Major
refactoring efforts are common every six to eight months and are likely to remain so for several years. And yet
Abjad continues to allow the creation of complex pieces of fully notated score in the midst of these changes.
We believe this is due to the extensive coverage provided by the automated regression battery described in the
following sections. Abjad 2.13 includes more than 10,000 tests.

17.4.1 Automated regression?

A battery is any collection of tests. Regression tests differ from other types of test in that they are designed to be
run again and again during many different stages of the development process. Regression tests help ensure that
the system continues to function correctly as developers make changes to it. An automated regression battery is
one that can be run automatically by some sort of driver with minimal manual intervention.

Several different test drivers are now in use in the Python community. Abjad uses py.test. The py . test distri-
bution is not included in the Python standard library, so one of the first thing new contributors to Abjad should do
is download and install py . test, and then run the existing battery.

17.4.2 Running the battery

Change to the directory where you have Abjad installed. Then run py . test:

abjads py.test

***** ======================== test session starts ==============================
platform darwin -- Python 2.7.3 —-- pytest-2.3.4

collected 4361 items / 3 skipped

demos/desordre/test/test_demos_desordre.py .
demos/ferneyhough/test/test_demos_ferneyhough.py .
demos/mozart/test/test_demos_mozart.py
demos/part/test/test_demos_part.py .
demos/part/test/test_demos_part_create_pitch_contour_reservoir.py
demos/part/test/test_demos_part_durate_pitch_contour_reservoir.py
demos/part/test/test_demos_part_shadow_pitch_contour_reservoir.py
ly/test/test_ly_environment.py .
tools/abctools/AbjadObject/test/test_AbjadObject__ repr_ .py ..
tools/chordtools/Chord/test/test_Chord__ contains__.py ..
tools/chordtools/Chord/test/test_Chord____copy__ .py
tools/chordtools/Chord/test/test_Chord__ deepcopy__.py .

tools/tuplettools/Tuplet/test/test_Tuplet_toggle_prolation.py ..
tools/voicetools/Voice/test/test_Voice_ copy__ .py ..
tools/voicetools/Voice/test/test_Voice__ delitem__ .py .
tools/voicetools/Voice/test/test_Voice__ len_ .py ..
tools/voicetools/Voice/test/test_Voice__ setattr__ .py .
tools/voicetools/Voice/test/test_Voice_is_nonsemantic.py ...
tools/voicetools/Voice/test/test_lily_voice_resolution.py

=== 4359 passed, 5 skipped in 147.13 seconds = ===

Abjad 2.13 includes 4359 py . test tests.

168 Chapter 17. Reading and writing code

http://codespeak.net/py/dist/test/test.html

Abjad Documentation, Release 2.13

17.4.3 Reading test output

py.test crawls the entire directory structure from which you call it, running tests in alphabetical order.
py.test prints the total number of tests per file in square brackets and prints test results as a single . dot
for success or else an F for failure.

17.4.4 Writing tests

Project check-in standards ask that tests accompany all code committed to the Abjad repository. If you add a new
function, class or method to Abjad, you should add a new test file for that function, class or method. If you fix or
extend an existing function, class or method, you should find the existing test file that covers that code and then
either add a completely new test to the test file or else update an existing test already present in the test file.

17.4.5 Test files start with test__

When py . test first starts up it crawls the entire directory structure from which you call it prior to running a
single test. As py.test executes this preflight work, it looks for any files beginning or ending with the string
test and then collects and alphabetizes these. Only after making such a catalog of tests does py . test begin
execution. This collect-and-cache behavior leads to the important point about naming, below.

17.4.6 Avoiding name conflicts

Note that the names of test functions must be absolutely unique across the entire directory structure on which
you call py.test. You must never share names between test functions. For example, you must not have two
tests named test_grob_handling_01 () even if both tests live in different test files. That is, a test named
test_grob_handling_01 () living in the file test_accidental_grob_handling.py and a second
test named test_grob_handling_01 () living in the file test_notehead_grob_handling.py will
conflict with the each other when py . test runs. And, unfortunately, py.test is silent about such conflicts when
it runs.

That is, should you run py.test with the duplicate naming situation described here, what will happen is that
py . test will correctly run and report results for the first such test it finds. However, when py . test encounters
the second like-named test, py . test will incorrectly report cached results for the first test rather than the second.

The take-away is to include some sort of namespacing indicators in every test name and not to be afraid of long
test names. The test_grob_handling_01 () example given here fixes easily when the two tests rename to
test_accidental_grob_handling_01 () and test_notehead_grob_handling_01 ().

17.4.7 Updating py . test

It is important periodically to update py . test.
The usual command to do this is:

S sudo pip install --upgrade pytest

Note that pytest is here spelled without the intervening period.

17.4.8 Running doctest on the tools directory

The Python standard library includes the doctest module as way of checking the correctness of examples
included in Python docstrings.

You can use the Abjad ajv developer suite to run doctest anywhere in the codebase:

abjad$ ajv doctest
Total modules: 954

17.4. Tests 169

Abjad Documentation, Release 2.13

Output like that shown above indicates that all doctests pass; errors will print to the terminal.

Abjad 2.13 includes more than 7000 doctests.

170 Chapter 17. Reading and writing code

CHAPTER
EIGHTEEN

DEVELOPER TOOLS

18.1 Using ajv

Abjad ships with an extensive collection of developer tools. The tools are accessible through the a jv developer
suite.

You'll find ajv in the abjad/scr/ directory. Make sure to add that directory to your path if you want to work
with a jv.

The a jv developer suite implements a command-line interface that is largely self-documenting:

abjads ajv —-help
usage: abj-dev [-h] [--version]

{help, list, api,book,clean, count,doctest, grep, new, re, rename, replace, svn, test,up}

Entry-point to Abjad developer scripts catalog.

optional arguments:

-h, —--help show this help message and exit
subcommands :
{help, list, api,book,clean, count,doctest, grep, new, re, rename, replace, svn, test,up}
help print subcommand help
list list subcommands
api Build the Abjad APIs.
book Preprocess HTML, LaTeX or ReST source with Abjad.
clean Clean *.pyc, *.swp, __pycache__ and tmp=
count "count"-related subcommands
doctest Run doctests on all modules in current path.
grep grep PATTERN in PATH
new "new"-related subcommands
re Run py.test -x, doctest -x and then rebuild the API
rename Rename public modules.
replace "replace"-related subcommands
svn "svn"-related subcommands
test Run "py.test" on various Abjad paths.
up run ajv svn up -R -C°

You can explore the different a jv subcommands like this:

abjads ajv clean —--help
usage: clean [-h] [--version] [--pyc] [--pycache] [--swp] [-—tmp] [path]

Clean x.pyc, *.swp, __pycache__ and tmp* files and folders from PATH.

positional arguments:
path directory tree to be recursed over

optional arguments:

-h, --help show this help message and exit
-—pyc delete x.pyc files

——pycache delete __pycache__ folders

171

Abjad Documentation, Release 2.13

——swp delete Vim x.swp file
—-—tmp delete tmpx folders

18.1.1 Searching the Abjad codebase with ajv grep

Abjad provides a wrapper around UNIX grep in the form of ajv grep:

S ajv grep is_assignable

./Duration/Duration.py:361: if not self.is_assignable:

./Duration/Duration.py:403: while not candidate.is_assignable:
./Duration/Duration.py:477: while not candidate.is_assignable:
./Duration/Duration.py:621: def is_assignable (self):

./Duration/Duration.py:629: .. duration.is_assignable)
./Duration/Duration.py:654: if mathtools.is_assignable_integer (self.numerator) :
./Duration/Duration.py:671: if not self.is_assignable:

Use this script to recursively search the entire Abjad codebase, leaving out non-human-readable files, files located
in special . svn Subversion subdirectories, and all files in the abjad/documentation directories.

You can run a jv grep from any directory on your system; you needn’t be in the Abjad source directories when
youcall ajv grep.

Alternatively you may prefer to install ack on your system.

18.1.2 Removing old files with ajv clean

See the section on ajv update below for the reasons that it is a good idea to periodically remove the byte-
compiled * . pyc files that Python generates for its own use behind the scenes. Abjad supplies ajv clean to
delete all the » . pyc in the Abjad codebase, leaving other » . pyc on your system untouched.

18.1.3 Updating your development copy of Abjad with ajv up

The normal way of updating your working copy of a Subversion repository is with the svn update or svn up
command. You can update your working copy of Abjad in the usual way with svn up. But Abjad supplies an
ajv up command as a wrapper around the usual Subversion update commands.

In addition to updating your working copy of Abjad, ajv up populates the abjad/_version.py file with
the most recent revision number of the system, and then removes all » . pyc files from your Abjad install. The
benefits here are twofold. First, Abjad adds the most recent revision number of the system to all . 1y files that
you generate when working with Abjad. If you do not update the Abjad version file on a regular basis, the headers
in your Abjad-generated . 1y files will list the wrong version of the system. Second, as is the case in working
with any substantial Python codebase, it is a good idea to periodically remove the byte-compiled * . pyc files that
Python creates for its own use. The reason for this is inadvertant name aliasing. That is, if there was previously
a module named foo.py somewhere in the system and if Python had at some point imported the module and
created foo.pyc as a byprodct, this . pyc file will remain on the filesystem even if you later decide to remove,
or rename, the source foo.py module. This lead to confusion because days or weeks after foo . py has been
removed, Python will still find foo.pyc and seem to make the contents of foo . py available from beyond the
grave.

Updating with ajv up takes care of these two situations.
18.1.4 Counting classes and functions with ajv count
You can use ajv count tools . onthe abjad/tools/ directory to get a count of classes and functions:

tools$ ajv count tools .
PUBLIC FUNCTIONS: 465

PUBLIC CLASSES: 486
PRIVATE FUNCTIONS: 38
PRIVATE CLASSES: 0

172 Chapter 18. Developer tools

Abjad Documentation, Release 2.13

18.1.5 Global search-and-replace with ajv replace

You probably won’t need to use ajv replace very often. But if you are making changes to Abjad that
will cause some name, such as FooBar, to be globally changed everywhere in the Abjad codebase to, say to
foo_bar, then you can use ajv replace to save lots of time:

S ajv replace text . 'FooBar’ ’foo_bar’ -Y

18.2 Using ajv book

ajv book is an independent application included in every installation of Abjad. ajv book allows you to write
Abjad code in the middle of documents written in HTML, LaTeX or ReST. We created a jv book to help us
document Abjad. Our work on ajv book was inspired by 1ilypond-book, which does for LilyPond much
what ajv book does for Abjad.

ajv book can be accessed on the commandline either via ajv book or through Abjad’s ajv tool collection.
For the most up-to-date documentation on ajv book, always consult ajv book —--help:

abjad$ ajv book --help
usage: abjad-book [-h] [--version] [--skip-rendering] [--verbose] [-X] [-M]
[path]

Preprocess HTML, LaTeX or ReST source with Abjad.

positional arguments:
path directory tree to be recursed over

optional arguments:

-h, --help show this help message and exit
-—version show program’s version number and exit
—-skip-rendering skip all image rendering and simply execute the code
--verbose run in verbose mode, printing all LilyPond output
-X, ——experimental rebuild abjad.tools docs after processing
-M, --mainline rebuild mainline docs after processing

DESCRIPTION

abjad-book processes Abjad snippets embedded in HTML, LaTeX, or ReST
documents. All Abjad code placed between the <abjad> </abjad> tags in
either HTML, LaTeX or ReST type documents is executed and replaced with
tags appropriate to the given file type. All output generated by the
code snippet is captured and inserted in the output file.

Apart from the special opening and closing Abjad tags, abjad-book also
has a special line-level suffix tag: “<hide . All lines ending with the
"<hide’ tag will be interpreted by Abjad but will not be displayed in the
OUTPUT document.

The opening <abjad> tag can also be followed by a list of
“attribute=value’ pair.

You can make all of an Abjad code block invisible in the output file with
the following opening tag:

<abjad>[hide=true]

This is useful for generating and embedding rendered score images without
showing any of the Abjad code.

You can also remove all of the prompts from a code block with the
following opening tag:

<abjad>[strip_prompt=true]

Simply use Abjad’s show() function to have Abjad call LilyPond on the
Abjad snippet and embed the rendered image in the document.

18.2. Using ajv book 173

Abjad Documentation, Release 2.13

All Abjad snippets *mustx start with no indentation in the document.
EXAMPLES
1. Create an HTML, LaTex or ReST document with embedded Abjad code
between <abjad></abjad> tags. The code *must* be fully flushed
to the left, with no tabs or spaces. The content of an HTML file
with embedded Abjad might look like this:
This is an HTML document. Here is Abjad code:
<abjad>
voice = Voice("c’4 d’'4 e’'4 fr4n
spannertools.BeamSpanner (voice)
show (voice)
</abjad>
More ordinary HTML text here.

2. Call "abjad-book™ on the file just created:

$ abjad-book file.htm.raw

18.2.1 HTML with embedded Abjad

To see ajv book in action, open a file and write some HTML by hand. Add some Abjad code to your HTML
between open and close <abjad> </abjad> tags.

<html>

<p>This is an HTML document.</p>

<p>The code is standard hypertext mark-up.</p>

<p>Here is some music notation generated automatically by Abjad:</p>
<abjad>

v = Voice("c’8 d’ e’ £’ g’ a’ b’ c'’'")

beam = spannertools.BeamSpanner (v)

show (v)

</abjad>

<p>And here is more ordinary HTML.</p>

</html>

Save your the file with the name example.html.raw. You now have an HTML file with embedded Abjad
code.

In the terminal, call ajv book in the directory:
S ajv book

Parsing file...
Rendering "ajv book-1.1ly"...

The application opens example .html . raw, finds all Abjad code between <abjad> </abjad> tags, executes it,
and then creates and inserts image files of music notation accordingly.

Open example.html with your browser.

174 Chapter 18. Developer tools

Abjad Documentation, Release 2.13

-

ena example-with-notation. html

=
q @ 4 Fle:ff Users ftrevorbaca/ Deskiop/example-with-notatienhtml = Q= Google) lil

This is an HTML document.
The code is standard hypenext mark-up.

Here is some music notation generated automatically by Abjad:

abjad> ¥ = Volce|construct.scale(®))
abjad> Beam(wv)
abjad> show(wv)

And here is more ordinary HTML.

That’s all there is to it. ajv book lets you open a file and type HTML by hand with Abjad sandwiched between
the special <abjad> </abjad> tags described here. Run ajv book on such a hybrid file to create pure HTML
with images of music notation created by Abjad.

Note that a jv book makes use of ImageMagick’s convert application to crop and scale PNG images generated
for HTML and ReST documents. For LaTeX documents, a jv book uses pdfcrop for cropping PDFs.

18.2.2 LaTeX with embedded Abjad

You can use ajv book to insert Abjad code and score excerpts into any LaTeX you create. Type the sample
code below into a file:

\documentclass{article}

\usepackage{graphicx}

\usepackage{listings}

\begin{document }

This is a standard LaTeX document with embedded Abjad.

The code below creates an Abjad measure and then prints the measure
format string.

<abjad>

measure = Measure((5, 8), "c’8 d’8 e’8 £’8 g’8")

f (measure)

</abjad>

This next bit of code knows about the measure we defined earlier.
<abjad>

show (measure)

</abjad>

And this is the end of the our sample LaTeX document.

\end{document }

Save your file with the name example.tex.raw. You now have a LaTeX file with embedded Abjad code.
In the terminal, call ajv book on example.tex.raw:

S ajv book example.tex.raw example.tex

18.2. Using ajv book 175

http://www.imagemagick.org/script/convert.php

Abjad Documentation, Release 2.13

Processing 'example.tex.raw’. Will write output to ’'example.tex’ ...
Parsing file...
Rendering "ajv book-1.1ly"...

The application open example.tex.raw, finds all code between Abjad tags, executes it, and then creates and
inserts Abjad interpreter output and PDF files of music notation. You can view the contents of the next LaTeX file
ajv book has created:

\documentclass{article}
\usepackage{graphicx}
\usepackage{listings}
\begin{document }

This is a standard LaTeX document with embedded Abjad.

The code below creates an Abjad measure and then prints the measure
format string.

\begin{lstlisting} [basicstyle=\footnotesize, tabsize=4, showtabs=false, showspaces=false]

>>> measure = Measure((5, 8), "c’8 d’8 e’8 f’8 g’8"

>>> f (measure)

{
\time 5/8
c’8
d’s
e’8
£f8
g’'8

}
\end{1lstlisting}

This next bit of code knows about the measure we defined earlier.
This code renders the measure as a PDF using a template suitable
for inclusion in LaTeX documents.

\includegraphics{images/ajv book-1.pdf}

And this is the end of the our sample LaTeX document.

\end{document }

You can now process the file example.tex just like any other LaTeX file, using pdflatex or TexShop or
whatever LaTeX compilation program you normally use on your computer:

S pdflatex example.tex
This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6)

%$&—1line parsing enabled.
entering extended mode

And then open the resulting PDF.

18.2.3 Using ajv book on ReST documents

You can call ajv book on ReST documents, too. Follow the examples given here for HTML and LaTeX
documents and modify accordingly.

18.2.4 Using [hide=true]

You can add [hide=true] to any ajv book example to show only music notation:

<abjad>[hide=true]

staff = Staff("c’8 d’8 e’8 £'8 g’8 a’8 b’’'8")
show (staff)

</abjad>

176 Chapter 18. Developer tools

CHAPTER
NINETEEN

DEVELOPMENT NOTES

19.1 Timing code

You can time code with Python’s built-in t ime it module:

from abjad import =
import timeit

timer = timeit.Timer ('Note (0, (1, 4))’, ’'from _ main__ import Note’)
print timer.timeit (1000)

0.12424993515

These results show that 1000 notes take 0.12 seconds to create.

Other Python timing modules are available for download on the public Internet.

19.2 Profiling code

Profile code with profile_expr () inthe iotools package:

>>> iotools.profile_expr (’'Note (0, (1, 4))")
Fri Oct 18 14:24:16 2013

1242 function calls (1121 primitive calls) in 0.003 seconds

Ordered by: cumulative time
List reduced from 83 to 12 due to restriction <12>

ncalls tottime percall cumtime percall filename:lineno (function)

1 0.000 0.000 0.003 0.003 <string>:1(<module>)
1 0.000 0.000 0.003 0.003 Note.py:45(__init_)
18 0.000 0.000 0.002 0.000 abc.py:128(__instancecheck_)
27 0.000 0.000 0.002 0.000 {isinstance}
68/11 0.001 0.000 0.002 0.000 abc.py:148(__subclasscheck__)
1 0.000 0.000 0.002 0.002 NoteHead.py:33(__init_)
1 0.000 0.000 0.002 0.002 NoteHead.py:237 (fset)
1 0.000 0.000 0.002 0.002 NamedPitch.py:29(__init_)
75/11 0.000 0.000 0.001 0.000 {issubclass}
1 0.000 0.000 0.001 0.001 Leaf.py:36(__init_)
85 0.000 0.000 0.001 0.000 _weakrefset.py:58(__iter_)
1 0.000 0.000 0.000 0.000 NamedPitch.py:232(_init_by_pitch_number)

These results show 1242 function calls to create a note.

19.3 Memory consumption

You can examine memory consumption with tools included in the guppy module:

177

Abjad Documentation, Release 2.13

from guppy import hpy

hp = hpy ()
hp.setrelheap (

)
notes = [Note (0, (1, 4)) for x in range(1000)

h = hp.heap ()
print h

Partition of a set of 11024 objects.

Index Count % Size % Cumulative
0 1000 9 124000 21 124000
1 1004 9 116464 20 240464
2 2003 18 76300 13 316764
3 1000 9 52000 9 368764
4 1000 9 44000 8 412764
5 1000 9 44000 8 456764
6 1000 9 40000 7 496764
7 1000 9 32000 528764
8 1011 9 28568 5 557332
9 1000 9 28000 5 585332

<6 more rows. Type e.g. '_.more'

These results show 586K for 1000 notes.

o
°

21
41
54
63

70

78
85
90

95
100

to view.>

Total size = 586364 bytes.

Kind (class / dict of class)
abjad.tools.notetools.Note.Not
__builtin__ .set

list

abjad.tools.pitchtools.NamedPi
icPitch.NamedPitch

abjad.interfaces._OffsetInterf
setInterface
abjad.tools.notetools.NoteHead
0x23addo

abjad.interfaces.Parentagelnte
ParentagelInterface
str

abjad.interfaces._NavigationIn
ace._NavigationInterface

You must download guppy from the public Internet because the module is not included in the Python standard

library.

19.4 Class attributes

Consider the definition of this class:

class FooWithInstanceAttribute (object) :

def _ init_ (self):
self.constants = (
"red’, ’'orange’, ’'yellow’,
"blue’, ’indigo’, ’'violet’,

)

1000 objects consume 176k:

from guppy import hpy
hp = hpy ()
hp.setrelheap ()

objects = [FooWithInstanceAttribute ()

h = hp.heap ()
print h

Partition of a set of 2004 objects.

Index Count % Size % Cumulative
0 1000 50 140000 79 140000
1 1000 50 32000 18 172000
2 1 0 4132 2 176132
3 1 0 348 0 176480
4 1 0 44 0 176524
5 1 0 12 0 176536

"green’,

o
)

79
97
100
100
100
100

for x in range (1000)

Total size = 176536 bytes.

Kind (class / dict of class)

dict of _ main__ .FooWithInstanceAttribute
__main__ .FooWithInstanceAttribute

list

types.FrameType

__builtin__ .weakref

int

178

Chapter 19. Development notes

Abjad Documentation, Release 2.13

But consider the definition of this class:
class FooWithSharedClassAttribute (object) :

def _ _init__ (self):
pass

self.constants = (
"red’, ’'orange’, ’'yellow’, ’green’,
"blue’, ’indigo’, ’'violet’,

)

1000 objects consume only 36k:

from guppy import hpy

hp = hpy ()

hp.setrelheap ()

objects = [FooWithClassAttribute() for x in range (1000)]
h = hp.heap ()

print h

Partition of a set of 1004 objects. Total size = 36536 bytes.

Index Count % Size % Cumulative % Kind (class / dict of class)
0 1000 100 32000 88 32000 88 __main__ .FooWithClassAttribute
1 1 0 4132 11 36132 99 1list
2 1 0 348 1 36480 100 types.FrameType
3 1 0 44 0 36524 100 _ builtin_ .weakref
4 1 0 12 0 36536 100 int

Objects that share class attributes between them can consume less memory than objects that don’t. But consider
the usual provisions between class attributes and instance attributes when implementing custom classes. Class
attributes make sense when objects will never modify the attribute in question. Class attributes also make sense
when objects will modify the attribute in question and will desire to change the attribute in question for all other
like objects at the same time. Probably best to use instance attributes in most other cases.

19.5 Using slots

Consider the definition of this class:

class Foo (object)

def _ _init__ (
self.a a
self.b = b
self.c e

self, a, b, c):

1000 objects consume 176k:

from guppy import hpy

hp = hpy ()

hp.setrelheap ()

objects = [Foo(l, 2, 3) for x in range(1000)

h = hp.heap()

print h

Partition of a set of 2004 objects. Total size = 176536 bytes.

Index Count % Size % Cumulative % Kind (class / dict of class)
0 1000 50 140000 79 140000 79 dict of _ main__ .FooWithInstanceAttribute
1 1000 50 32000 18 172000 97 __main__ .FooWithInstanceAttribute
2 1 0 4132 2 176132 100 list
3 1 0 348 0 176480 100 types.FrameType
4 1 0 44 0 176524 100 __builtin__ .weakref
5 1 0 12 0 176536 100 int

But consider the definition of this class:

19.5. Using slots 179

Abjad Documentation, Release 2.13

class FooWithSlots (object) :

__slots__ = ('a "b", 'c")
def _ init_ (self, a, b, c):
self.a = a
self.b = b
self.c = ¢

1000 objects consume only 40k:

from guppy import hpy

hp = hpy ()
hp.setrelheap ()
objects = [FooWithSlots(l, 2, 3) for x in range (1000)]
h = hp.heap()
print h
Partition of a set of 1004 objects. Total size = 40536 bytes.
Index Count % Size % Cumulative % Kind (class / dict of class)
0 1000 100 36000 89 36000 89 __main__.Bar
1 1 0 4132 10 40132 99 1list
2 1 0 348 1 40480 100 types.FrameType
3 1 0 44 0 40524 100 __builtin__ .weakref
4 1 0 12 0 40536 100 int

The example here confirms the Python Reference Manual 3.4.2.4: “By default, instances of both old and new-style
classes have a dictionary for attribute storage. This wastes space for objects having very few instance variables.
The space consumption can become acute when creating large numbers of instances.”

180

Chapter 19. Development notes

Part VII

Appendices

181

CHAPTER
TWENTY

PITCH CONVENTIONS

20.1 Pitch numbers

Abjad numbers pitches like this:

>>> score, treble_staff, bass_staff = scoretools.make_empty_piano_score ()
>>> duration = Duration(l, 32)

>>> pitches = range(-12, 12 + 1)
>>> abjad_configuration.set_default_accidental_spelling(’sharps’)

>>> for pitch in pitches:

note = Note (pitch, duration)

rest = Rest (duration)

clef = pitchtools.suggest_clef_ for_ named_pitches ([note.written_pitch])

if clef == contexttools.ClefMark (’treble’):
treble_staff.append(note)
bass_staff.append(rest)

else:
treble_staff.append(rest)
bass_staff.append(note)

pitch_number = note.written_pitch.pitch_number

markup = markuptools.Markup (str (pitch_number), Down)

markup = markup.attach (bass_staff[-1]

>>> score.override.beam.transparent = True

>>> score.override.time_signature.stencil = False

>>> score.override.flag.transparent = True

>>> score.override.rest.transparent = True

>>> score.override.stem.stencil = False

>>> score.override.text_script.staff_padding = 6

>>> score.set.proportional_notation_duration = schemetools.SchemeMoment (1, 56)

>>> lilypond_file = lilypondfiletools.make_basic_lilypond_file (score)
>>> lilypond_file.global_staff size = 15
>>> show(lilypond_file)

— ._”'_'_.:#,—o—go—cﬁii

i L7 1SN

-12-11-10-% -8 - 6 5 4 3 2 -1 0 1 2 3 4 5 6 T 8 8§ 10 11 12

20.2 Diatonic pitch numbers

Abjad numbers diatonic pitches like this:

183

Abjad Documentation, Release 2.13

>>> score, treble_staff, bass_staff = scoretools.make_empty_piano_score ()
>>> duration = Duration(l, 32)

>>> pitches = []
>>> diatonic_pitches = [0, 2, 4, 5, 7, 9, 11]

>>> pitches.extend([-24 + x for x in diatonic_pitches])

>>> pitches.extend([-12 + x for x in diatonic_pitches])

>>> pitches.extend ([0 + x for x in diatonic_pitches])

>>> pitches.extend([12 + x for x in diatonic_pitches])

>>> pitches.append(24)

>>> abjad_configuration.set_default_accidental_spelling ('’ sharps’)

>>> for pitch in pitches:
note = Note (pitch, duration)
rest = Rest (duration)
clef = pitchtools.suggest_clef_ for named_pitches ([note.written_pitch])
if clef == contexttools.ClefMark (’'treble’):
treble_staff.append(note)
bass_staff.append(rest)
else:
treble_staff.append (rest)
bass_staff.append (note)
diatonic_pitch_number note.written_pitch.diatonic_pitch_number
markup = markuptools.Markup (str (diatonic_pitch_number), Down)
markup = markup.attach (bass_staff[-1])

>>> score.override.beam.transparent = True

>>> score.override.time_signature.stencil = False

>>> score.override.flag.transparent = True

>>> score.override.rest.transparent = True

>>> score.override.stem.stencil = False

>>> score.override.text_script.staff_padding = 6

>>> score.set.proportional_notation_duration = schemetools.SchemeMoment (1, 52)

>>> lilypond_file = lilypondfiletools.make_basic_lilypond_file (score)
>>> lilypond_file.global_staff size = 15
>>> show (lilypond_file)

- *

._’_._._._'___,_.;

W e
]
L

-—-—'_'_'_‘_'_'_.

-14 -13 -12-11-10-% -8 -7 6 56 ¢4 3 2 -1 O 1 2 3 4 6 6 T B 8§ 10 11 12 13 14

s v s’

20.3 Accidental abbreviations

Abjad abbreviates accidentals like this:

accidental name abbreviation
quarter sharp ‘qs’

quarter flat ‘qf’

sharp ‘s’

flat ‘f
three-quarters sharp | ‘tgs’
three-quarters flat ‘tqf’

double sharp ‘ss’

double flat “ff°

184 Chapter 20. Pitch conventions

Abjad Documentation, Release 2.13

20.4 Octave designation

Abjad designates octaves with both numbers and ticks:

octave notation

tick notation

Cc7

¢ ¢

C6

C5

c4

C3

Cc2

Cl1

20.5 Default accidental spelling

By default Abjad picks between enharmonic equivalents according to the following table:

pitch-class number pitch-class name

C

C#

D

Eb

E

F

Fi#

G

Gb

A

Bb

==\ Q|| N R W=D

0
1

B

You can change the default accidental spelling like this:

>>> abjad_configuration[’default_accidental_spelling’]

Or like this:

>>> abjad_configuration[’default_accidental_ spelling’]

Or like this:

>>> abjad_configuration[’default _accidental spelling’]

"sharps’

"sharps’

"mixed’

20.4. Octave designation

185

Abjad Documentation, Release 2.13

186 Chapter 20. Pitch conventions

CHAPTER
TWENTYONE

BIBLIOGRAPHY

187

Abjad Documentation, Release 2.13

188 Chapter 21. Bibliography

BIBLIOGRAPHY

[Adan2006] Victor Adan. Music <-> Geometry <-> Meta-Music. Draft February 12, 2006.

[AgonAssayagBresson2006] Carlos Agon, Gérard Assayag, Jean Bresson. The OM Composer’s Book 1. Editions
Delatour, Paris. 2006.

[AgonHaddadAssayag2002] Carlos Agon, Karim Haddad & Gerard Assayag. Répresentation et rendu de struc-
tures rhythmiques. Journées d’Informatique Musicale, 9th ed., Marseille, 29 - 31 May 2002.

[Alegant1993] Brian Alegant. The seventy-seven partitions of the aggregate: Analytical and theoretical implica-
tions. Doctoral Dissertation. The University of Rochester, Eastman School of Muisc. 1993.

[Ariza2005] Christopher Ariza. An Open Design for Computer-Aided Algorithmic Music Composition:
athenaCL. Dissertation.com, Boca Raton. 2005.

[BacaAdan2007] Trevor Baca & Victor Addn. Cuepatlahto and Lascaux: two approaches to the formalized con-
trol of musical score. Draft June 7, 2007.

[BressonAgonAssayag2008] Jean Bresson, Carlos Agon, Gérard Assayag. The OM Composer’s Book 2. Editions
Delatour, Paris. 2008

[Carter2002] Eliot Carter. Harmony Book. Nicholas Hopkins and John F. Link, eds. Carl Fischer, New York.
2002.

[Haddad] Karim Haddad. Le Temps comme Territoire: pour une géographie temporelle.

[Kampelal998] Arthur Kampela. Uma Faca Sé Lamina. Doctoral Dissertation. Columbia University, NY, NY.
1998.

[Malt2008] Mikhail Malt. Some Considerations on Brian Ferneyhough’s Musical Language Through His Use of
CAC - Part I: Time and Rhythmic Structures. In Bresson, Agon and Assayag (2008).

[Morris1987] Robert Morris. Composition with Pitch-Classes. Yale University Press, New Haven. 1987.

[Nauert1997] Paul Nauert. Timespan Formation in Nonmetric, Posttonal Music. Doctoral Dissertation. Columbia
University, NY, NY. 1997.

[NienhuysNieuwenhuizen2003] Han-Wen Nienhuys & Jan Nieuwenhuizen. Lilypond: A system for automated
music engraving. Proceedings of the XIV Colloquium on Musical Informatics. Firenze, Italy. May 8 - 10,
2003.

[Ross1987] Ted Ross. Teach Yourself The Art of Music Engraving and Processing. Hansen House, Miami Beach.
1987.

[Selfridge-Field1997] Eleanor Selfridge-Field, ed. Beyond MIDI: The Handbook of Musical Codes. The MIT
Press. Cambridge, Massachusetts. 1997.

[Valle] Andrea Valle. GeoGraphy: Notazione musicale e composizione algorithmica. Centro Interdipartimentale
di Ricerca sulla Multimedialita e I’ Audiovisivo. Universita degli Studi di Torino.

[WulfsonBarrettWinter] Harris Wulfson, G. Douglas Barrett & Michael Winter. Automatic Notation Generators.

189

	I Start here
	Abjad?
	Abjad extends LilyPond
	Abjad extends Python
	What next?
	Mailing lists

	Installation
	Abjad depends on Python
	Abjad depends on LilyPond
	Installing the current packaged version of Abjad with pip
	Manually installing Abjad from the Python Package Index
	Configuring Abjad

	II System Overview
	Leaf, Container, Spanner, Mark
	Example 1
	Example 2

	Parsing
	LilyPond Parsing
	RhythmTree Parsing
	``Reduced-Ly'' Parsing

	Durations
	Breves, longas and other long durations
	LilyPond multipliers
	What's the difference between duration and written duration?
	What does it mean for a duration to be ``assignable''?

	III Examples
	Bartók: Mikrokosmos
	The score
	The measures
	The notes
	The details

	Ferneyhough: Unsichtbare Farben
	The proportions
	The transforms
	The rhythms
	The score
	The LilyPond file

	Ligeti: Désordre
	The cell
	The measure
	The staff
	The score

	Mozart: Musikalisches Würfelspiel
	The materials
	The structure
	The score
	The document

	Pärt: Cantus in Memory of Benjamin Britten
	The score template
	The bell music
	The string music
	The edits
	The marks
	The LilyPond file

	IV Tutorials
	First steps with Python, LilyPond and Abjad
	Getting started
	Knowing your operating system
	Chosing a text editor
	Launching the terminal
	Where to save your work

	LilyPond ``hello, world!''
	Writing the file
	Interpreting the file
	Repeating the process

	Python ``hello, world!'' (at the interpreter)
	Starting the interpreter
	Entering commands
	Stopping the interpreter

	Python ``hello, world!'' (in a file)
	Writing the file
	Interpreting the file
	Repeating the process

	More about Python
	Doing many things
	Looking around

	Abjad ``hello, world'' (at the interpreter)
	Starting the interpreter
	Entering commands
	Stopping the interpreter

	Abjad ``hello, world!'' (in a file)
	Writing the file
	Interpreting the file
	Repeating the process

	More about Abjad
	How it works
	Inspecting output

	Working with notation
	Working with lists of numbers
	Creating lists
	Inspecting list attributes
	Adding and removing elements
	Indexing and slicing lists
	Reversing the order of elements

	Changing notes to rests
	Making a repeating pattern of notes
	Iterating the notes in a staff
	Enumerating the notes in a staff
	Changing notes to rests by index
	Changing notes to rests by pitch

	Creating rest-delimited slurs
	Entering input
	Grouping notes and chords
	Skipping one-note slurs

	Mapping lists to rhythms
	Simple example

	Overriding LilyPond grobs
	Grobs control typography
	Abjad grob-override component plug-ins
	Nested Grob properties can be overriden
	Check the LilyPond docs

	Understanding time signature marks
	Getting started
	LilyPond's implicit 4/4
	Using time signature marks
	First-measure pick-ups

	Working with component parentage
	Getting the parentage of a component
	Parentage attributes

	Working with logical voices
	What is a logical voice?
	Logical voices vs. explicit voices
	Different voice names determine different logical voices
	Identical voice names determine a single logical voice
	The importance of naming voices

	V Reference manual
	Leaves
	Chords
	Making chords from a LilyPond input string
	Making chords from numbers
	Getting all the written pitches of a chord at once
	Getting the written pitches of a chord one at a time
	Adding one pitch to a chord at a time
	Adding many pitches to a chord at once
	Deleting pitches from a chord
	Formatting chords
	Working with note heads
	Working with empty chords

	Notes
	Making notes from a LilyPond input string
	Making notes from numbers
	Getting and setting the written pitch of notes
	Getting and setting the written duration of notes
	Overriding notes
	Removing note overrides

	Rests
	Making rests from strings
	Making rests from durations
	Making rests from other Abjad leaves
	Making multi-measure rests
	Getting and setting the written duration of rests

	Containers
	Containers
	Creating containers
	Selecting music
	Inspecting length
	Inspecting duration
	Adding one component to the end of a container
	Adding many components to the end of a container
	Finding the index of a component
	Inserting a component by index
	Removing a component by index
	Removing a component by reference
	Naming containers
	Understanding { } and << >> in LilyPond
	Understanding sequential and simultneous containers
	Changing sequential and simultaneous containers
	Overriding containers
	Overriding containers' contents
	Removing container overrides

	LilyPond files
	Making LilyPond files
	Inspecting header, layout and paper blocks
	Setting global staff size and default paper size
	Setting title, subtitle and composer information

	Measures
	Understanding measures in LilyPond
	Understanding measures in Abjad
	Creating measures

	Scores
	Making a score from a LilyPond input string
	Making a score from a list of Abjad components
	Understanding the interpreter representation of a score
	Inspecting the LilyPond format of a score
	Selecting the music in a score
	Inspecting a score's leaves
	Getting the length of a score
	Inspecting duration
	Adding one component to the bottom of a score
	Finding the index of a score component
	Removing a score component by index
	Removing a score component by reference
	Inspecting whether or not a score contains a component
	Naming scores

	Staves
	Making a staff from a LilyPond input string
	Making a staff from a list of Abjad components
	Understanding the interpreter representation of a staff
	Inspecting the LilyPond format of a staff
	Selecting the music in a staff
	Inspecting a staff's leaves
	Getting the length of a staff
	Inspecting duration
	Adding one component to the end of a staff
	Adding many components to the end of a staff
	Finding the index of a component in a staff
	Removing a staff component by index
	Removing a staff component by reference
	Naming staves
	Changing the context of a voice
	Making parallel voices in a staff

	Tuplets
	Making a tuplet from a LilyPond input string
	Making a tuplet from a list of other Abjad components
	Understanding the interpreter representation of a tuplet
	Understanding the string representation of a tuplet
	Inspecting the LilyPond format of a tuplet
	Selecting the music in a tuplet
	Inspecting a tuplet's leaves
	Getting the length of a tuplet
	Inspecting duration
	Understanding rhythmic augmentation and diminution
	Changing the multiplier of a tuplet
	Adding one component to the end of a tuplet
	Adding many components to the end of a tuplet
	Finding the index of a component in a tuplet
	Removing a tuplet component by index
	Removing a tuplet component by reference
	Overriding attributes of the LilyPond tuplet number grob
	Overriding attributes of the LilyPond tuplet bracket grob

	Voices
	Making a voice from a LilyPond input string
	Making a voice from a list of other Abjad components
	Understanding the interpreter representation of a voice
	Inspecting the LilyPond format of a voice
	Selecting the music in a voice
	Inspecting a voice's leaves
	Getting the length of a voice
	Inspecting duration
	Adding one component to the end of a voice
	Adding many components to the end of a voice
	Finding the index of a component in a voice
	Removing a voice component by index
	Removing a voice component by reference
	Naming voices
	Changing the context of a voice

	Attachments
	Annotations
	Creating annotations
	Attaching annotations to a component
	Getting the annotations attached to a component
	Detaching annotations from a component
	Inspecting the component to which an annotation is attached
	Inspecting annotation name
	Inspecting annotation value
	Getting the value of an annotation in a single call

	Articulations
	Creating articulations
	Attaching articulations to a leaf
	Attaching articulations to many notes and chords at once
	Getting the articulations attached to a leaf
	Detaching articulations from a leaf
	Detaching all articulations attached to a leaf at once
	Inspecting the leaf to which an articulation is attached
	Understanding the interpreter representation of an articulation that is not attached to a leaf
	Understanding the interpreter representation of an articulation that is attached to a leaf
	Understanding the string representation of an articulation
	Inspecting the LilyPond format of an articulation
	Controlling whether an articulation appears above or below the staff
	Getting and setting the name of an articulation
	Copying articulations
	Comparing articulations
	Overriding attributes of the LilyPond script grob

	Instruments
	Initializing instruments
	Attaching instruments to a component
	Getting the instrument attached to a component
	Getting the instrument in effect for a component
	Detaching instruments from a component
	Inspecting the component to which an instrument is attached
	Inspecting the instrument name of an instrument
	Inspecting the short instrument name of an instrument

	LilyPond command marks
	Creating LilyPond command marks
	Attaching LilyPond command marks to Abjad components
	Inspecting the LilyPond command marks attached to an Abjad component
	Detaching LilyPond command marks from a component
	Inspecting the component to which a LilyPond command mark is attached
	Getting and setting the command name of a LilyPond command mark
	Copying LilyPond commands
	Comparing LilyPond command marks

	LilyPond comments
	Creating LilyPond comments
	Attaching LilyPond comments to leaves
	Attaching LilyPond comments to containers
	Getting the LilyPond comments attached to a component
	Detaching LilyPond comments from a component
	Detaching all LilyPond comments attached to a component
	Inspecting the component to which a LilyPond comment is attached
	Inspecting the contents string of a LilyPond comment

	Spanners
	Overriding spanners
	Overriding the components to which spanners attach
	Removing spanner overrides

	Pitches
	Named pitches
	Creating named pitches
	Inspecting the name of a named pitch
	Inspecting the octave of a named pitch
	Sorting named pitches
	Comparing named pitches
	Converting a named pitch to a numbered pitch
	Converting a named pitch to a named pitch-class
	Converting a named pitch to a numbered pitch-class
	Copying named pitches

	VI Developer documentation
	Reading and writing code
	Codebase
	How the Abjad codebase is laid out
	Removing prebuilt versions of Abjad before you check out
	Installing the development version

	Coding standards
	General philosophy
	Codebase layout
	Tests
	Casing and naming
	Imports
	Whitespace and indentation
	Line length
	Comments
	Docstrings
	Quotation
	Functions and methods
	Classes and class file layout
	Operators
	Misc

	Docs
	How the Abjad docs are laid out
	Installing Sphinx
	Using ajv api
	Removing old builds of the documentation
	Building the HTML docs
	Building a PDF of the docs
	Building a coverage report
	Building other versions of the docs
	Inserting images with abjad-book
	Updating Sphinx

	Tests
	Automated regression?
	Running the battery
	Reading test output
	Writing tests
	Test files start with test_
	Avoiding name conflicts
	Updating py.test
	Running doctest on the tools directory

	Developer tools
	Using ajv
	Searching the Abjad codebase with ajv grep
	Removing old files with ajv clean
	Updating your development copy of Abjad with ajv up
	Counting classes and functions with ajv count
	Global search-and-replace with ajv replace

	Using ajv book
	HTML with embedded Abjad
	LaTeX with embedded Abjad
	Using ajv book on ReST documents
	Using [hide=true]

	Development notes
	Timing code
	Profiling code
	Memory consumption
	Class attributes
	Using slots

	VII Appendices
	Pitch conventions
	Pitch numbers
	Diatonic pitch numbers
	Accidental abbreviations
	Octave designation
	Default accidental spelling

	Bibliography
	Bibliography

