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CHAPTER
ONE

OVERVIEW AND TUTORIAL

1.1 Introduction

The modules defined here are designed to facilitate least-squares fitting of noisy data by multi-dimensional, nonlinear
functions of arbitrarily many parameters. The central module is 1sgfit because it provides the fitting functions.
1sgfit makes heavy use of auxiliary module gvar, which provides tools that facilitate the analysis of error propa-
gation, and also the creation of complicated multi-dimensional Gaussian distributions.

The following (complete) code illustrates basic usage of 1sqfit:

import numpy as np
import gvar as gv
import lsqgfit

y = { # data for the dependent variable
"datal’” : gv.gvar([1.376, 2.010], [[ 0.0047, 0.01], [ 0.01, 0.05611),
"data2’ : gv.gvar([1.329, 1.582], [[ 0.0047, 0.0067], [0.0067, 0.013611),
"b/a’ : gv.gvar (2.0, 0.5)
}

x = { # independent variable

"datal’” : np.array([0.1, 1.01]),
"data2’” : np.array([0.1, 0.57)

}
prior = dict(a=gv.gvar (0.5, 0.5), b=gv.gvar (0.5, 0.5))

def fcn(x, p): # fit function of x and parameters p
ans = {}
for k in [’'datal’, ’'data2’]:
ans[k] = gv.exp(pl[’a’] + x[k] = p[’'b"])
ans[’'b/a’] = pl'b"] / pl’a’]
return ans

# do the fit

fit = lsgfit.nonlinear_fit (data=(x, y), prior=prior, fcn=fcn)
print (fit.format (100)) # print standard summary of fit

p = fit.p # best-fit values for parameters
outputs = dict(a=pl[’a’]l, b=p[’b’'])

outputs['b/a’] = pl['b’]1/pl’a’]

inputs = dict (y=y, prior=prior)

print (gv.fmt_values (outputs)) # tabulate outputs

print (gv.fmt_errorbudget (outputs, inputs)) # print error budget for outputs

# save best-fit values in file ’outputfile.p’ for later use
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import pickle
pickle.dump (fit.p, open (’outputfile.p’, "wb’))

This code fits the function f (x,a,b)= exp (a+b*x) (see fcn (x,p)) to two sets of data, labeled datal
and data2, by varying parameters a and b until £ (x[’datal’],a,b) and f(x[’data2’],a,b) equal
y[’datal’] and y[’data2’ ], respectively, to within the ys’ errors. The means and covariance matrices for
the ys are specified in the gv.gvar (. . .) s used to create them: for example,

>>> print (y[’datal’])
[1.376 += 0.0685565 2.01 +- 0.236643]

>>> print (y[’datal’][0].mean, "+-", y[’datal’][0].sdev)
1.376 +- 0.068556546004
>>> print (gv.evalcov(y[’datal’])) # covariance matrix
[[ 0.0047 0.01 ]

[ 0.01 0.056 11

shows the means, standard deviations and covariance matrix for the data in the first data set (0.0685565 is the square
root of the 0.0047 in the covariance matrix). The dictionary prior gives a priori estimates for the two parameters,
a and b: each is assumed to be 0.5+0.5 before fitting. The parameters p [k] in the fit function fcn (x, p) are
stored in a dictionary having the same keys and layout as prior. In addition, there is an extra piece of input data,
y[’b/a’ ], which indicates that b/a is 2£0.5. The fit function for this data is simply the ratio b/a (represented by
pl’b’1/p([’a’] infit function fcn (x, p) ). The fit function returns a dictionary having the same keys and layout
as the input data y.

The output from the code sample above is:

Least Square Fit:

chi2/dof [dof] = 0.17 [5] Q0 = 0.97 1o0gGBF = 0.65538 itns = 5
Parameters:
a 0.253 (32) [ 0.50 (50) 1
b 0.449 (65) [ 0.50 (50) ]
Fit
key ylkey] f(p) [key]
b/a 2.00 (50) 1.78 (30)
datal 0 1.376 (69) 1.347 (406)
1 2.01 (24) 2.02 (le)
data2 0 1.329 (69) 1.347 (46)
1 1.58 (12) 1.612 (82)
Settings:
svdcut = (le—-15,1e-15) svdnum = (None, None) reltol/abstol = 0.0001/0
Values:

a: 0.253(32)
b/a: 1.78(30)
b: 0.449(65)

o)

Partial % Errors:

a b/a b

% 12.75 16.72 14.30
prior 0.92 1.58 1.88
total 12.78 16.80 14.42

The best-fit values for a and b are 0.253(32) and 0.449(65), respectively; and the best-fit result for b/a is 1.78(30),

4 Chapter 1. Overview and Tutorial
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which, because of correlations, is slightly more accurate than might be expected from the separate errors for a and b.
The error budget for each of these three quantities is tabulated at the end and shows that the bulk of the error in each
case comes from uncertainties in the y data, with only small contributions from uncertainties in the priors prior.
The fit results corresponding to each piece of input data are also tabulated (Fit: .. .); the agreement is excellent,
as expected given that the chi 2 per degree of freedom is only 0.17.

The last section of the code uses Python’s pickle module to save the best-fit values of the parameters in a file for
later use. They are recovered using pickle again:

>>> import pickle

>>> p = pickle.load(open (' outputfile.p’, "rb’))
>>> print (p['a’])

0.252798 +- 0.0323152

>>> print (p['b’])

0.448762 +— 0.0647224

>>> print (p[’'b’]1/pl’a’])

1.77518 +- 0.298185

The recovered parameters are gvar . GVars, with their full covariance matrix intact. (pickle works here because
the variables in fit .p are stored in a special dictionary of type gvar.BufferDict; gvar.GVars cannot be
pickled otherwise.)

Note that the constraint in y on b/a in this example is much tighter than the constraints on a and b separately. This
suggests a variation on the previous code, where the tight restriction on b/ a is built into the prior rather than y:

as before

y = { # data for the dependent variable
"datal’” : gv.gvar([1.376, 2.010]1, [[ 0.0047, 0.011, [ 0.01, 0.05611),
"data2’ : gv.gvar([1.329, 1.582], [[ 0.0047, 0.0067], [0.0067, 0.0136]11)
}

x = { # independent variable
"datal’” : np.array([0.1, 1.01),

"data2’” : np.array([0.1, 0.5])

}
prior = dict(a=gv.gvar (0.5, 0.5))

prior[’'b’] = prior[’a’lxgv.gvar (2.0, 0.5)
def fcn(x, p): # fit function of x and parameters p[k]
ans = {}

for k in [’'datal’, ’'data2’]:
ans[k] = gv.exp(pl’a’] + x[kl*pl[’b"1])
return ans

as before

Here the dependent data y no longer has an entry for b/ a, and neither do results from the fit function; but the prior
for b is now 2+£0.5 times the prior for a, thereby introducing a correlation that limits the ratio b/a to be 2+0.5 in the
fit. This code gives almost identical results to the first one — very slightly less accurate, since there is less input data.
We can often move information from the y data to the prior or back since both are forms of input information.

There are several things worth noting from this example:

* The input data (y) is expressed in terms of Gaussian random variables — quantities with means and a covariance
matrix. These are represented by objects of type gvar .GVar in the code; module gvar has a variety of tools
for creating and manipulating Gaussian random variables.

* The input data is stored in a dictionary (y) whose values can be gvar .GVars or arrays of gvar .GVars. The
use of a dictionary allows for far greater flexibility than, say, an array. The fit function (fcn (x, p)) has to
return a dictionary with the same layout as that of y (that is, with the same keys and where the value for each

1.1. Introduction 5
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key has the same shape as the corresponding value in y). 1sgfit does allow y to be an array instead of a
dictionary, which might be preferable for very simple fits (but usually not otherwise).

» The independent data (x) can be anything; it is simply passed through the fit code to the fit function fcn (x, p) .
It can also be omitted altogether, in which case the fit function depends only upon the parameters: fcn (p) .

¢ The fit parameters (p in £cn (x, p) ) are also stored in a dictionary whose values are gvar . GVars or arrays of
gvar.GVars. Again this allows for great flexibility. The layout of the parameter dictionary is copied from that
of the prior (prior). Again p can be a single array instead of a dictionary, if that simplifies the code (which is
usually not the case).

* The best-fit values of the fit parameters (£it .p[k]) are also gvar .GVars and these capture statistical cor-
relations between different parameters that are indicated by the fit. These output parameters can be combined
in arithmetic expressions, using standard operators and standard functions, to obtain derived quantities. These
operations take account of and track statistical correlations.

* Function gvar. fmt_errorbudget () is a useful tool for assessing the origins (inputs) of the statistical
errors obtained in various final results (outputs). It is particularly useful for analyzing the impact of the a
priori uncertainties encoded in the prior (prior).

What follows is a brief tutorial that demonstrates in greater detail how to use these modules in some standard variations
on the data fitting problem. As above, code for the examples is specified completely and so can be copied into a file,
and run as is. It can also be modified, allowing for experimentation.

About Printing: The examples in this tutorial use the print function as it is used in Python 3. Drop the outermost
parenthesis in each print statement if using Python 2; or add

from _ future_  import print_function

at the start of your file.

1.2 Making Fake Data

We need data in order to demonstrate curve fitting. The easiest route is to make fake data. The recipe is simple: 1)
choose some well defined function £ (x) of the independent variable x; 2) choose values for the xs, and therefore the
“correct” values for y=f (x) ; and 3) add random noise to the ys, to simulate measurement errors. Here we will work
through a simple implementation of this recipe to illustrate how the gvar module can be used to build complicated
Gaussian distributions (in this case for the correlated noise in the ys). A reader eager to fit real data can skip this
section on first reading.

For the function £ we choose something familiar (to some people): a sum of exponentials sum_1=0..99 a[i]
exp (-E[i]+x). We take as our exact values for the parameters a [1]=0.4 and E[i]=0.9x (i+1), which are
easy to remember. This is simple in Python:

import numpy as np

def f_exact (x, nexp=100) :
return sum(0.4 % np.exp(-0.9 « (1 + 1) % x) for i in range (nexp))

For xswetake 1,2,3..10,12,14..20, and exact ys are then given by f_exact (x):

>>> x = array([(1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,12.,14.,16.,18.,20.1)
>>> y_exact = f_exact (x)

>>> print (y_exact) # correct/exact values for y

[ 2.74047100e-01 7.92134506e-02 2.88190008e-02 ... ]

Finally we need to add random noise to the y_exacts to obtain our fit data. We do this by forming y_exact+noise
where

6 Chapter 1. Overview and Tutorial
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noise = 1 + sum_n=0..99 c[n] * (x / X_max) *+* n,

Here x_max is the largest x used, and the c [n] are Gaussian random variable with means and standard deviations of
order 0.01. This is easy to implement in Python using the gvar module:

import gvar as gv

def make_data (nexp=100, eps=0.01): # make x, y fit data

x = np.array([(l1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,12.,14.,16.,18.,20.1)
cr = gv.gvar (0.0, eps)

c = [gv.gvar(cr(), eps) for n in range(100)]

X_Xmax = x/max (x)

noise = 1 + sum(c[n] * x_xmax ** n for n in range(100))
y = f_exact(x, nexp) =* noise

return x, y

Gaussian variable cr represents a Gaussian distribution with mean 0.0 and width 0.01, which we use here as a random
number generator: cr () is a number drawn randomly from the distribution represented by cr:

>>> print (cr)

0 +- 0.01

>>> print (cr())
0.00452180208286
>>> print (cr())
-0.00731564589737

We use cr () to generate mean values for the Gaussian distributions represented by the c [n]s, each of which has
width 0.01. The resulting ys fluctuate around the corresponding values of £_exact (x) and have statistical errors:

>>> print (y)

[0.275179 +- 0.0027439 0.0795054 +- 0.000796125 ... ]

>>> print (y-f_exact (x))

[0.00113215 +- 0.0027439 0.000291951 +- 0.000796125 ... ]

Different ys are also correlated (by construction), which becomes clear if we evaluate the covariance matrix for the
vs:

>>> print (gv.evalcov (y))

[[ 7.52900382e-06 2.18173029%e-06 7.95744444e-07 ... ]

[ 2.18173029e-06 6.33815228e-07 2.31761675e-07 ... ]
[ 7.95744444e-07 2.31761675e-07 8.49651978e-08 ... ]

]

The diagonal elements of the covariance matrix are the variances of the individual ys; the off-diagonal elements are a
measure of the correlations < (y[i]-<y[i]>) * (y[Jjl-<y[jl>) >.

The Gaussian variables y [1] together with the numbers x [1] comprise our fake data.

1.3 Basic Fits

Now that we have fitdata, x, y = make_data (), we pretend ignorance of the exact functional relationship between
x and y (i.e., y=f_exact (x)). Typically we do know the functional form and have some a priori idea about the
parameter values. The point of the fit is to improve our knowledge of the parameter values, beyond our a priori
impressions, by analyzing the fit data. Here we see how to do this using the 1sqgfit module.

First we need code to represent the fit function. In this case we know that a sum of exponentials is appropriate, so we
define the following Python function to represent the relationship between x and y in our fit:

1.3. Basic Fits 7
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import numpy as np

def f(x, p): # function used to fit x, y data
a =pl['a’] # array of a[i]s
E =pl'E"] # array of E[i]s

return sum(ai * np.exp(-Ei x x) for ai, Ei in zip(a, E))

The fit parameters, a [1] and E [1], are stored in a dictionary, using labels a and b to access them. These parameters
are varied in the fit to find the best-fit values p=p_fit for which £ (x, p_fit) most closely approximates the ys
in our fit data. The number of exponentials included in the sum is specified implicitly in this function, by the lengths
ofthep[’a’] andp[’E’ ] arrays.

Next we need to define priors that encapsulate our a priori knowledge about the parameter values. In practice we
almost always have a priori knowledge about parameters; it is usually impossible to design a fit function without some
sense of the parameter sizes. Given such knowledge it is important (usually essential) to include it in the fit. This is
done by designing priors for the fit, which are probability distributions for each parameter that describe the a priori
uncertainty in that parameter. As in the previous section, we use objects of type gvar . GVar to describe (Gaussian)
probability distributions. Let’s assume that before the fit we suspect that each a [1] is of order 0.540.5, while E [ 1]
isof order 1+1i40.5. A prior that represents this information is built using the following code:

import lsqgfit
import gvar as gv

def make_prior (nexp): # make priors for fit parameters
prior = gv.BufferDict () # prior —-- any dictionary works
prior[’a’] = [gv.gvar (0.5, 0.5) for i in range (nexp) ]
prior[’'E’] = [gv.gvar(i+l, 0.5) for i in range (nexp) ]

return prior

where nexp is the number of exponential terms that will be used (and therefore the number of as and Es). With
nexp=3, for example, one would then have:

>>> print (prior[’a’l])

[0.5 +- 0.5 0.5 +- 0.5 0.5 +- 0.5]
>>> print (prior[’E’])

[1 +- 0.5 2 +4- 0.5 3 +- 0.5]

We use dictionary-like class gvar .Buf ferDict for the prior because it allows us to save the prior if we wish (using
Python’s pickle module). If saving is unnecessary, gvar.BufferDict can be replaced by dict () or most any
other Python dictionary class.

With fit data, a fit function, and a prior for the fit parameters, we are finally ready to do the fit, which is now easy:
fit = lsgfit.nonlinear_fit (data=(x, y), fcn=f, prior=prior)

So pulling together the entire code, from this section and the previous one, our complete Python program for making
fake data and fitting it is:

import 1lsgfit
import numpy as np
import gvar as gv

def f_exact (x, nexp=100) : # exact f(x)
return sum(0.4xnp.exp(-0.9x (i+1)+x) for i in range (nexp))

def f(x, p): # function used to fit x, y data
a =pl'a’] # array of a[i]s
E =pl['E"] # array of E[i]s

return sum(ai * np.exp(-Ei * x) for ai, Ei in zip(a, E))

8 Chapter 1. Overview and Tutorial
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def make_data (nexp=100, eps=0.01): # make x,

y fit data

X = np.array([(1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,12.,14.,16.,18.,20.1)

cr = gv.gvar (0.0, eps)

c = [gv.gvar(cr(), eps) for n in range(100)]

X_xmax = xX/max (x)

noise = 1+ sum(c[n] *» x_xmax »* n for n in range(100))
y = f_exact (x, nexp) * noise

return x, y

def make_prior (nexp) : # make priors for fit parameters
prior = gv.BufferDict () # prior -— any dictionary works
prior[’a’] = [gv.gvar (0.5, 0.5) for i in range (nexp) ]
prior[’E’] = [gv.gvar(i+l, 0.5) for i in range (nexp)]

return prior

def main () :
gv.ranseed([2009, 2010, 2011, 2012]) # initialize random numbers (opt.)
x, y = make_datal() # make fit data
p0 = None # make larger fits go faster (opt.)

for nexp in range (3, 20):

Print (/ sxkkkkkkkxkkhkhk kA xxkkkkkk kXX kkkkk k% Nexp =', nexp)

prior = make_prior (nexp)
fit = lsgfit.nonlinear_fit (data=(x, y), fcn=f, prior=prior, pO=p0)
print (fit) # print the fit results
E = fit.p['E’] # best—-fit parameters
a = fit.p['a’]
print ("E1/E0 =’, E[1] / E[0], ' E2/EO0 =', E[2] / EI[O0])
print ("al/a0 =", aflll / al0l, 7 a2/a0 =", al2] / al0])
print ()
if fit.chi2 / fit.dof < 1.:
p0 = fit.pmean # starting point for next fit (opt.)
if _ name_ == '_ _main_ ’:
main ()

We are not sure a priori how many exponentials are needed to fit our data; given that there are only fifteen ys, and
these are noisy, there may only be information in the data about the first few terms. Consequently we wrote our code
to try fitting with each of nexp=3,4,5..19 terms. (The pieces of the code involving p0 are optional; they make
the more complicated fits go about 30 times faster since the output from one fit is used as the starting point for the
next fit — see the discussion of the p0O parameter for 1sqgfit.nonlinear_fit.) Running this code produces the
following output, which is reproduced here in some detail in order to illustrate a variety of features:

R B R B S B R B I I I I I I e b b b b I I e nexp = 3
Least Square Fit:
chi2/dof [dof] = 6.3e+02 [15] Q=0 1logGBF = -4465.1 itns = 30
Parameters:
a0 0.0288 (11) [ 0.50 (50) 1
1 0.0354 (13) [ 0.50 (50) 1
2 0.0779 (30) [ 0.50 (50) 1]
EO 1.0107 (24) [ 1.00 (50) 1
1 2.0200 (27) [ 2.00 (50) 1
2 3.6643 (33) [ 3.00 (50) 1
Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 1.99859 +- 0.00239496 E2/E0 =

3.62551 +- 0.00618821

1.3. Basic Fits
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al/a0 = 1.2313 +- 0.000474021 a2/a0 = 2.707 +- 0.00130172

R R B S R I i I I I I b e I b b I b b b b 2 b g nexp = 4
Least Square Fit:
chi2/dof [dof] = 0.57 [15] Q = 0.9 logGBF = 220.04 itns = 220
Parameters:
a 0 0.4018 (40) [ 0.50 (50) 1
1 0.4055 (42) [ 0.50 (50) 1]
2 0.4952 (76) [ 0.50 (50) 1
3 1.124 (12) [ 0.50 (50) 1
E O 0.90037 (51) [ 1.00 (50) 1
1 1.8023 (13) [ 2.00 (50) ]
2 2.7731 (90) [ 3.00 (50) ]
3 4.383 (21) [ 4.00 (50) 1
Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0
E1/E0 = 2.00179 +- 0.00120727 E2/EQ0 = 3.07996 +- 0.00977469

al/a0 = 1.00942 +- 0.00299114 a2/a0 = 1.23251 +- 0.0140225

R R I b I b b S Sb b S b S b e S b e S b b Sh b I Sb b b b b b 2h b 4 neXp = 5

Least Square Fit:

chi2/dof [dof] = 0.45 [15] Q = 0.97 logGBF = 220.84 itns = 6
Parameters:
a0 0.4018 (40) [ 0.50 (50) ]
1 0.4049 (44) [ 0.50 (50) ]
2 0.478 (26) [ 0.50 (50) ]
3 0.63 (28) [ 0.50 (50) ]
4 0.62 (35) [ 0.50 (50) ]
E O 0.90036 (51) [ 1.00 (50) ]
1 1.8019 (15) [ 2.00 (50) ]
2 2.759 (22) [ 3.00 (50) ]
3 4.09 (26) [ 4.00 (50) ]
4 4.95 (48) [ 5.00 (50) ]
Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0
E1/E0 = 2.00133 +- 0.00142399 E2/E0 = 3.06486 +- 0.024111

al/a0 = 1.00754 +- 0.00422523 a2/a0

1.18874 +- 0.0632288

KAKKAIAKAA KK A KA A A AR A A A A A AN A I A A XA A XA A KKK nexp = 6

Least Square Fit:

chi2/dof [dof] = 0.45 [15] Q = 0.97 logGBF = 220.7 itns = 6
Parameters:
a o 0.4018 (40) [ 0.50 (50) ]
1 0.4041 (47) [ 0.50 (50) 1
2 0.461 (41) [ 0.50 (50) ]
3 0.60 (24) [ 0.50 (50) ]
4 0.47 (37) [ 0.50 (50) 1
5 0.45 (406) [ 0.50 (50) ]
E O 0.90035 (51) [ 1.00 (50) ]
1 1.8015 (17) [ 2.00 (50) 1
2 2.746 (34) [ 3.00 (50) ]
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3 3.98 (32) [ 4.00 (50) ]
4 4.96 (49) [ 5.00 0) 1
6.01 (50) [ 6.00 (50) 1
Settings:
svdcut = (le-15,1le-15) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 2.00084 +- 0.00168855 E2/E0 = 3.04939 +- 0.0374116
al/a0 = 1.00551 +- 0.00561391 a2/a0 = 1.14607 +- 0.101175

KAk kA kA h Ak hhhhhkdhkrdkhkrdhkhkkhkhkhrdhkrhhkxkhxk* neXp = 7

Least Square Fit:

chi2/dof [dof] = 0.45 [15] Q = 0.96 1ogGBF = 220.6 itns = 6
Parameters:
a0 0.4018 (40) [ 0.50 (50) ]

1 0.4036 (48) [ 0.50 (50) ]

2 0.452 (47) [ 0.50 (50) ]

3 0.60 (22) [ 0.50 (50) 1]

4 0.42 (37) [ 0.50 (50) ]

5 0.42 (46) [ 0.50 (50) ]

6 0.46 (49) [ 0.50 (50) ]

E O 0.90035 (51) [ 1.00 (50) ]

1 1.8012 (18) [ 2.00 (50) ]

2 2.739 (39) [ 3.00 (50) 1

3 3.94 (33) [ 4.00 (50) ]

4 4.96 (49) [ 5.00 (50) ]

5 6.02 (50) [ 6.00 (50) 1

6 7.02 (50) [ 7.00 (50) ]
Settings:

svdcut = (le—-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 2.00059 +- 0.00181902 E2/E0 = 3.04178 +- 0.0431729
al/a0 = 1.0045 +- 0.00626848 a2/a0 = 1.1258 +- 0.116336
khkhkhkkhkhkhkkhhkhkhhhkhhkhkhkrhkhkrkhkhkhkkhkhkhkhkhkhkhkhhkkhrtk nexp = 19

Least Square Fit:

chi2/dof [dof] = 0.46 [15] Q = 0.96 1logGBF = 220.52 itns =1
Parameters:

a 0 0.4018 (40) [ 0.50 (50) 1

1 0.4033 (49) [ 0.50 (50) ]

2 0.447 (51) [ 0.50 (50) ]

3 0.60 (21) [ 0.50 (50) 1

4 0.38 (37) [ 0.50 (50) ]

5 0.40 (46) [ 0.50 (50) ]

6 0.45 (49) [ 0.50 (50) 1

7 0.48 (50) [ 0.50 (50) ]

8 0.49 (50) [ 0.50 (50) ]

9 0.50 (50) [ 0.50 (50) 1

10 0.50 (50) [ 0.50 (50) ]

11 0.50 (50) [ 0.50 (50) ]

12 0.50 (50) [ 0.50 (50) 1

13 0.50 (50) [ 0.50 (50) ]
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14 0.50 (50) [ 0.50 (50) 1

15 0.50 (50) [ 0.50 (50) 1

16 0.50 (50) [ 0.50 (50) ]

17 0.50 (50) [ 0.50 (50) 1

18 0.50 (50) [ 0.50 (50) 1

EO 0.90035 (51) [ 1.00 (50) 1

1 1.8011 (19) [ 2.00 (50) 1

2 2.734 (42) [ 3.00 (50) 1

3 3.91 (33) [ 4.00 (50) ]

4 4.97 (49) [ 5.00 (50) 1

5 6.02 (50) [ 6.00 (50) 1

6 7.02 (50) [ 7.00 (50) ]

7 8.01 (50) [ 8.00 (50) ]

8 9.00 (50) [ 9.00 (50) 1]

9 10.00 (50) [ 10.00 (50) ]

10 11.00 (50) [ 11.00 (50) 1

11 12.00 (50) [ 12.00 (50) 1

12 13.00 (50) [ 13.00 (50) ]

13 14.00 (50) [ 14.00 (50) 1

14 15.00 (50) [ 15.00 (50) 1

15 16.00 (50) [ 16.00 (50) ]

16 17.00 (50) [ 17.00 (50) 1

17 18.00 (50) [ 18.00 (50) 1

18 19.00 (50) [ 19.00 (50) ]

Settings:
svdcut = (le—-15,1e-15) svdnum = (None, None) reltol/abstol = 0.0001/0
E1/E0 = 2.00041 +- 0.00190442 E2/EQ0 = 3.0363 +- 0.046784

al/a0 = 1.00376 +- 0.00668978 a2/a0 = 1.11149 +- 0.125413

————————————————— fit with extra information

There are several things to notice here:

¢ Clearly three exponentials (nexp=3) is not enough. The chi %2 per degree of freedom (chi2/dof) is much

larger than one. The chix*2 improves significantly for nexp=4 exponentials and by nexp=6 the fit is as
good as it is going to get — there is essentially no change when further exponentials are added.

The best-fit values for each parameter are listed for each of the fits, together with the prior values (in parentheses,
on the right). Values for each a[1] and E[1] are listed in order, starting at the points indicated by the labels a
and E.

Once the fit converges, the best-fit values for the various parameters agree well — that is to within their errors,
approximately — with the exact values, which we know since we are using fake data. For example, a and E for
the first exponential are 0.402(4) and 0.9003(5), respectively, from the fit where the exact answers are 0.4 and
0.9; and we get 0.45(5) and 2.73(4) for the third exponential where the exact values are 0.4 and 2.7.

Note in the nexp=7 fit how the means and standard deviations for the parameters governing the seventh (and
last) exponential are almost identical to the values in the corresponding priors: 0.46(49) from the fit for a and
7.0(5) for E. This tells us that our fit data has little or no information to add to what we knew a priori about
these parameters — there isn’t enough data and what we have isn’t accurate enough.

This situation is truer still of further terms as they are added in the nexp=8 and later fits. This is why the fit
results stop changing once we have nexp=6 exponentials. There is no point in including further exponentials,
beyond the need to verify that the fit has indeed converged.

The last fit includes nexp=19 exponentials and therefore has 38 parameters. This is in a fit to 15 ys. Old-
fashioned fits, without priors, are impossible when the number of parameters exceeds the number of data points.

12
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That is clearly not the case here, where the number of terms and parameters can be made arbitrarily large,
eventually (after nexp=6 terms) with no effect at all on the results.

The reason is that the prior that we include for each new parameter is, in effect, a new piece of data (the mean
and standard deviation of the a priori expectation for that parameter); it leads to a new term in the chix«2
function. We are fitting both the data and our a priori expectations for the parameters. So in the nexp=19 fit,
for example, we actually have 53 pieces of data to fit: the 15 ys plus the 38 prior values for the 38 parameters.

The effective number of degrees of freedom (dof in the output above) is the number of pieces of data minus the
number of fit parameters, or 53-38=15 in this last case. With priors for every parameter, the number of degrees
of freedom is always equal to the number of ys, irrespective of how many fit parameters there are.

* The Gaussian Bayes Factor (whose logarithm is 10gGBF in the output) is a measure of the likelihood that the
actual data being fit could have come from a theory with the prior and fit function used in the fit. The larger this
number, the more likely it is that prior/fit-function and data could be related. Here it grows dramatically from
the first fit (nexp=3) but then more-or-less stops changing around nexp=6. The implication is that this data
is much more likely to have come from a theory with nexp>=6 than with nexp=3 (which we know to be the
actual case).

* In the code, results for each fit are captured in a Python object fit, which is of type
lsgfit.nonlinear_fit. A summary of the fit information is obtained by printing £it. Also the best-fit
results for each fit parameter can be accessed through fit .p, as is done here to calculate various ratios of
parameters.

The errors in these last calculations automatically account for any correlations in the statistical errors for dif-
ferent parameters. This is obvious in the ratio al/a0, which would be 1.004(16) if there was no statistical
correlation between our estimates for al and a0, but in fact is 1.004(7) in this fit. The (positive) correlation is
evident in the covariance matrix:

>>> print (gv.evalcov([a[0], a[l]]))
[[ 1.61726195e-05 1.65492001e-05]
[ 1.65492001e-05 2.41547633e-05]]

Finally we inspect the fit’s quality point by point. The input data are compared with results from the fit func-
tion, evaluated with the best-fit parameters, in the following table (obtained in the code by printing the output from
fit.format (100)):

Fit:

x[k] vy [k] f(x[kl,p)
1 0.2752 (27) 0.2752 (20)

2 0.07951 (80) 0.07952 (58)

3 0.02891 (29) 0.02892 (21)

4 0.01127 (11) 0.011272 (83)

5 0.004502 (46) 0.004506 (34)

6 0.001817 (19) 0.001819 (14)

7 0.0007362 (79) 0.0007375 (57)

8 0.0002987 (33) 0.0002994 (24)

9 0.0001213 (14) 0.00012163 (99)

10 0.00004926 (57) 0.00004943 (41)
12 8.13(10)e-06 8.164(72)e-06
14 1.342(19)e-06 1.348(13)e-06
16 2.217(37)e-07 2.227(23)e-07
18 3.661(85)e-08 3.679(40)e-08
20 6.24(61)e-09 6.078(71)e-09

The fit is excellent over the entire eight orders of magnitude. This information is presented again in the following plot,
which shows the ratio v/ f (x, p), as a function of x, using the best-fit parameters p. The correct result for this ratio,
of course, is one. The smooth variation in the data — smooth compared with the size of the statistical-error bars — is

1.3. Basic Fits 13
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an indication of the statistical correlations between individual ys.
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This particular plot was made using the matplotlib module, with the following code added to the end of main ()
(outside the loop):

import pylab as plt

ratio =y / f(x, fit.pmean)

plt.x1lim (0, 21)

plt.xlabel ("x")

plt.ylabel ("yv/f(x,p)")

plt.errorbar (x=x, y=gv.mean(ratio), yerr=gv.sdev(ratio), fmt="ob’)
plt.plot([0.0, 21.0], [1.0, 1.07)

plt.show ()

1.4 Chained Fits

The priors in a fit represent knowledge that we have about the parameters before we do the fit. This knowledge might
come from theoretical considerations or experiment. Or it might come from another fit. Imagine that we want to add
new information to that extracted from the fit in the previous section. For example, we might learn from some other
source that the ratio of amplitudes a[1]/a[0] equals 14+1e-5. The challenge is to combine this new information
with information extracted from the fit above without rerunning that fit. (We assume it is not possible to rerun the first
fit, because, say, the input data for that fit has been lost or is unavailable.)

We can combine the new data with the old fit results by creating a new fit using the best-fit parameters, fit .p,
from the old fit as the priors for the new fit. To try this out, we add the following code onto the end of the main ()
subroutine in the previous section:

def ratio(p): # new fit function
a =pla’l
return a[l] / al[0]
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prior = fit.p # prior = best-fit parameters from lst fit
data = gv.gvar(l, le-b5) # new data for the ratio
newfit = lsqgfit.nonlinear_fit (data=data, fcn=ratio, prior=prior)

print (newfit)

The result of the new fit (to one piece of new data) is:

Least Square Fit:

chi2/dof [dof] = 0.32 [1] Q0 = 0.57 1ogGBF = 3.9303 itns = 2
Parameters:

a0 0.4018 (40) [ 0.4018 (40) ]
1 0.4018 (40) [ 0.4033 (49) ]

2 0.421 (20) [ 0.447 (51) ]

3 0.53 (17) [ 0.60 (21) ]

4 0.46 (34) [ 0.38 (37) 1]

5 0.50 (42) [ 0.40 (406) ]

6 0.50 (48) [ 0.45 (49) ]

7 0.50 (50) [ 0.48 (50) 1

8 0.50 (50) [ 0.49 (50) 1

9 0.50 (50) [ 0.50 (50) ]
10 0.50 (50) [ 0.50 (50) 1
11 0.50 (50) [ 0.50 (50) 1
12 0.50 (50) [ 0.50 (50) 1
13 0.50 (50) [ 0.50 (50) 1
14 0.50 (50) [ 0.50 (50) 1
15 0.50 (50) [ 0.50 (50) 1
16 0.50 (50) [ 0.50 (50) 1
17 0.50 (50) [ 0.50 (50) 1
18 0.50 (50) [ 0.50 (50) 1
E O 0.90030 (51) [ 0.90035 (51) ]
1 1.80007 (67) [ 1.8011 (19) ]

2 2.711 (12) [ 2.734 (42) ]

3 3.76 (18) [ 3.91 (33) 1

4 5.02 (48) [ 4.97 (49) ]

5 6.00 (50) [ 6.02 (50) ]

6 7.00 (50) [ 7.02 (50) 1

7 8.00 (50) [ 8.01 (50) 1

8 9.00 (50) [ 9.00 (50) ]

9 10.00 (50) [ 10.00 (50) 1
10 11.00 (50) [ 11.00 (50) 1
11 12.00 (50) [ 12.00 (50) 1
12 13.00 (50) [ 13.00 (50) 1
13 14.00 (50) [ 14.00 (50) 1
14 15.00 (50) [ 15.00 (50) 1
15 16.00 (50) [ 16.00 (50) 1
16 17.00 (50) [ 17.00 (50) 1
17 18.00 (50) [ 18.00 (50) 1
18 19.00 (50) [ 19.00 (50) 1

Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

Parameters a[0] and E[0] are essentially unchanged by the new information, but a[i] and E[i] are much more
precise for 1=2 and i=3. It might seem odd that E[1], for example, is changed at all, since the fit function,
ratio (p), makes no mention of it. This is not surprising, however, since ratio (p) does depend up a[1],
and a[1] is strongly correlated with E [1] through the prior. It is important to include all parameters from the first
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fit as parameters in the new fit in order to capture the impact of the new information on parameters correlated with
a[ll/alo0].

It would have been easy to change the fit code in the previous section to incorporate the new information about
al[l]/al0]. The approach presented here is numerically equivalent to that approach insofar as the the chix*2
function for the original fit can be well approximated by a quadratic function in the fit parameters — that is, insofar
as exp (-chi**2/2) is well approximated by a Gaussian distribution in the parameters, as specified by the best-fit
means and covariance matrix (in £it . p). This is, of course, a fundamental assumption underlying the use of 1sgfit
in the first place.

Obviously, we can include further fits in order to incorporate more data. The prior for each new fit is the best-fit output
(fit.p) from the previous fit. The output from the chain’s final fit is the cammulative result of all of these fits.

1.5 x has Error Bars

We now consider variations on our basic fit analysis (described above). The first variation concerns what to do when
the independent variables, the xs, have errors, as well as the ys. This is easily handled by turning the xs into fit
parameters, and otherwise dispensing with independent variables.

To illustrate this, we modify the basic analysis code above. First we need to add errors to the xs, which we do by
changing make_data so that each x has a random value within about +0.001% of its original value and an error:

def make_data (nexp=100, eps=0.01): # make x, y fit data
X = np.array([(1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,12.,14.,16.,18.,20.1)
cr = gv.gvar (0.0, eps)

c = [gv.gvar(cr(), eps) for n in range(100)]

X_Xmax = x/max (x)

noise = 1+ sum(c[n] * x_xmax ** n for n in range (100))

y = f_exact(x, nexp) =* noise # noisy yl[i]s

xfac = gv.gvar (1.0, 0.00001) # Gaussian distrib’n: 1£0.001%

x = np.array([xi % gv.gvar (xfac(), xfac.sdev) for xi in x]) # noisy x[i]s

return x, y

Here gvar.GVar object xfac is used as a random number generator: each time it is called, xfac () is a dif-
ferent random number from the distribution with mean xfac.mean and standard deviation xfac. sdev (that is,
1£0.00001). The main program is modified so that the (now random) x array is treated as a fit parameter. The prior
for each x is, obviously, specified by the mean and standard deviation of that x, which is read directly out of the array
of xs produced by make_data ():

def make_prior (nexp, Xx): # make priors for fit parameters
prior = gv.BufferDict () # prior —-—- any dictionary works
prior[’a’] = [gv.gvar (0.5, 0.5) for i in range (nexp) ]
prior[’E’] = [gv.gvar(i+l, 0.5) for i in range (nexp)]
prior[’'x"] = x # x now an array of parameters

return prior

def main() :
gv.ranseed([2009, 2010, 2011, 2012]) # initialize random numbers (opt.)
x, y = make_data() # make fit data
p0 = None # make larger fits go faster (opt.)
for nexp in range (3, 20):

print(’************************************* nexp =, nexp)
prior = make_prior (nexp, Xx)

fit = lsgfit.nonlinear_fit (data=y, fcn=f, prior=prior, p0=p0)
print (fit) # print the fit results

E = fit.p[’'E’] # best-fit parameters

a = fit.pl[’a’]
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—

E2/EQ ,
a2/a0 =",

print ("E1/E0 =',

print ("al/al0 ="',

print ()

if fit.chi2/fit.dof<1.:
r0 fit.pmean

E[0], 7
afor, '

# starting point for next fit (opt.)

The fit data now consists of just the y array (data=y), and the fit function loses its x argument and gets its x values

from the fit parameters p instead:

def f(p):
a=mpla’]
E =pl'&"]
x = pl'x

Running the new code gives, for nexp=6 terms:

KAKAAIAA A I A A A AR A AR A AR A A A A AR A AR KA KR KAk l’lexp 6

Least Square Fit:

1
return sum(airexp (-Eixx) for ai, Ei in zip(a, E))

chi2/dof [dof] = 0.54 [15] Q = 0.92 1logGBF = 198.93 itns = 6
Parameters:
a 0 0.4025 (41) [ 0.50 (50) 1]
1 0.429 (32) [ 0.50 (50) 1
2 0.58 (23) [ 0.50 (50) 1]
3 0.40 (38) [ 0.50 (50) 1]
4 0.42 (406) [ 0.50 (50) 1
5 0.46 (49) [ 0.50 (50) 1]
E O 0.90068 (60) [ 1.00 (50) 1]
1 1.818 (20) [ 2.00 (50) 1
2 2.95 (28) [ 3.00 (50) 1]
3 3.98 (49) [ 4.00 (50) 1]
4 5.02 (50) [ 5.00 (50) 1
5 6.01 (50) [ 6.00 (50) 1
x 0 0.999997 (10) [ 0.999997 (10) 1
1 1.999958 (20) [ 1.999958 (20) ]
2 3.000014 (30) [ 3.000013 (30) ]
3 4.000065 (36) [ 4.000064 (40) 1
4 5.000047 (34) [ 5.000069 (50) ]
5 6.000020 (39) [ 5.999986 (60) ]
6 6.999988 (40) [ 6.999942 (70) 1
7 7.999956 (42) [ 7.999982 (80) ]
8 8.999934 (50) [ 9.000054 (90) ]
9 9.999923 (59) [ 9.99991 (10) 1]
10 11.999929 (79) [ 11.99982 (12) ]
11 13.99992 (11) [ 13.99991 (14) ]
12 15.99992 (15) [ 15.99998 (16) 1]
13 18.00022 (18) [ 18.00020 (18) ]
14 20.00016 (20) [ 20.00016 (20) ]
Settings:
svdcut = (le—-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0
E1/E0 = 2.01801 +- 0.0216404 E2/E0 = 3.27385 +- 0.305544
al/a0 = 1.06515 +- 0.0765488 a2/a0 = 1.4485 +- 0.573896

This looks quite a bit like what we obtained before, except that now there are 15 more parameters, one for each x, and
also now all results are a good deal less accurate. Note that one result from this analysis is new values for the xs. In
some cases the errors on the x values have been reduced — by information in the fit data.

1.5. x has Error Bars
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1.6 Correlated Parameters; Gaussian Bayes Factor

gvar.GVar objects are very useful for handling more complicated priors, including situations where we know a
priori of correlations between parameters. Returning to the Basic Fits example above, imagine a situation where we
still have a =0.5 uncertainty about the value of any individual E [ 1 ], but we know a priori that the separations between
adjacent E [1]sis 0.9£0.01. We want to build the correlation between adjacent E [ i ] s into our prior.

We do this by introducing a gvar .GVar object de [1] for each separate difference E[1]-E[1i-1], with de [0]
beingE[0]:

de = [gvar(0.9, 0.01) for i in range (nexp)]
de[0] = gvar(l, 0.5) # different distribution for E[0]

Then de[0] specifies the probability distribution for E[0], de[0]+de[1l] the distribution for E[1],
de[0]+de[1l]+de[2] the distribution for E[2], and so on. This can be implemented (slightly inefficiently) in
a single line of Python:

E = [sum(de[:1+1]) for i in range (nexp) ]

For nexp=3, this implies that

>>> print (E)

[l +- 0.5 1.9 +- 0.5001 2.8 +- 0.5002]
>>> print (E[1] - E[0], E[2] - E[1])
0.9 +- 0.01 0.9 +- 0.01

which shows that each E [1] separately has an uncertainty of £0.5 (approximately) but that differences are specified
to within £0.01.

In the code, we need only change the definition of the prior in order to introduce these correlations:

def make_prior (nexp) : # make priors for fit parameters
prior = gv.BufferDict () # prior —— any dictionary works
prior[’a’] = [gv.gvar (0.5, 0.5) for i in range (nexp)]
de = [gv.gvar (0.9, 0.01) for i in range (nexp) ]
de[0] = gv.gvar(l, 0.5)
prior[’E’] = [sum(del: i + 1]) for i in range (nexp) ]

return prior

Running the code as before, but now with the correlated prior in place, we obtain the following fit with nexp="7 terms:

R R I b S b b S Sb b S b S b e b b S b b Sb b I Sb 2h b 2b 2b S 2h b 4 neXp = 7

Least Square Fit:

chi2/dof [dof] = 0.44 [15] Q = 0.97 1ogGBF = 227.47 itns = 3
Parameters:
a0 0.4018 (40) [ 0.50 (50) ]
1 0.4016 (42) [ 0.50 (50) ]
2 0.404 (12) [ 0.50 (50) 1
3 0.394 (406) [ 0.50 (50) ]
4 0.40 (16) [ 0.50 (50) ]
5 0.51 (31) [ 0.50 (50) 1
6 0.52 (42) [ 0.50 (50) ]
E O 0.90032 (51) [ 1.00 (50) ]
1 1.8001 (11) [ 1.90 (50) 1
2 2.701 (10) [ 2.80 (50) ]
3 3.601 (14) [ 3.70 (50) ]
4 4.501 (17) [ 4.60 (50) 1
5 5.401 (20) [ 5.50 (50) ]
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6 6.301 (22) [ 6.40 (50) ]
Settings:
svdcut = (le-15,None) svdnum = (None,None) reltol/abstol = 0.0001/0
E1/E0 = 1.9994 +- 0.00106276 E2/E0 = 2.99989 +- 0.0110965

al/a0 = 0.999601 +- 0.00254531 a2/a0 = 1.00498 +- 0.0280721

The results are similar to before for the leading parameters, but substantially more accurate for parameters describing
the second and later exponential terms, as might be expected given our enhanced knowledge about the differences be-
tween E [ 1]s. The output energy differences are particularly accurate: they range fromE [1]-E[0] = 0.900 (1),
which is ten times more precise than the prior, to E[6]-E[5] = 0.900 (10), which is just what was put into the
fit through the prior (the fit data adds no new information). The correlated prior allows us to merge our a priori
information about the energy differences with the new information carried by the fit data x, vy.

Note that the Gaussian Bayes Factor (see 10gGBF in the output) is significantly larger with the correlated prior
(LogGBF = 227) than it was for the uncorrelated prior (LogGBF = 221). Had we been uncertain as to which
prior was more appropriate, this difference says that the data prefers the correlated prior. (More precisely, it says that
we would be exp (227-221) = 400 times more likely to get this data from a theory with the correlated prior than
from one with the uncorrelated prior.) This difference is significant despite the fact that the chix «2s in the two cases
are almost the same. chix*«*2 tests goodness of fit, but there are usually more ways than one to get a good fit. Some
are more plausible than others, and the Bayes factor helps sort out which.

1.7 Tuning Priors and the Empirical Bayes Criterion

Given two choices of prior for a parameter, the one that results in a larger Gaussian Bayes Factor after fitting (see
1o0gGBF in fit output or £it . LogGBF) is the one preferred by the data. We can use this fact to tune a prior or set of
priors in situations where we are uncertain about the correct a priori value: we vary the widths and/or central values
of the priors of interest to maximize 10gGBF. This leads to complete nonsense if it is applied to all the priors, but it is
useful for tuning (or testing) limited subsets of the priors when other information is unavailable. In effect we are using
the data to get a feel for what is a reasonable prior. This procedure for setting priors is called the Empirical Bayes
method.

This method is implemented in a driver program

fit, z = lsqgfit.empbayes_£fit (z0, fitargs)

which varies numpy array z, starting at z0, to maximize £it . LogGBF where
fit = lsgfit.nonlinear_fit (xxfitargs(z)).
Function fitargs (z) returns a dictionary containing the arguments for nonlinear_fit (). These arguments,

and the prior in particular, are varied as some function of z. The optimal fit (that is, the one for which fit .1ogGBF
is maximum) and z are returned.

To illustrate, consider tuning the widths of the priors for the amplitudes, prior [’ a’ ], in the example from the
previous section. This is done by adding the following code to the end of main () subroutine:

def fitargs(z, nexp=nexp, prior=prior, f=£f, data=(x, y), p0=p0):

z = np.exp(z)
prior[’a’] = [gv.gvar (0.5, 0.5 * z[0]) for i in range (nexp) ]
return dict (prior=prior, data=data, fcn=f, p0=p0)

##

z0 = [0.0]

fit, z = empbayes_fit (z0, fitargs, tol=le-3)

print (fit) # print the optimized fit results
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E = fit.p['E"] # best—fit parameters
a = fit.pl[’a’]

print (E1/E0 =', E[1] / EI[O], ' E2/E0 =", E[2] / E[O0])
print('al/a0 =", alll / al0O], ' a2/a0 =", al[2] / al0])
print ("prior([’a’] =", fit.prior([’a’]1[0])

print ()

Function fitargs generates a dictionary containing the arguments for 1sgfit.nonlinear fit. These are
identical to what we have been using except that the width of the priors in prior[’a’] is adjusted according
to parameter z. Function 1sgfit.empbayes_fit () does fits for different values of z and selects the z that
maximizes £it . LogGBF. It returns the corresponding fit and the value of z.

This code generates the following output when nexp=7:

Least Square Fit:

chi2/dof [dof] = 0.77 [15] Q0 =20.71 1logGBF = 233.98 itns = 1
Parameters:
a0 0.4026 (40) [ 0.500 (95) 1]
1 0.4025 (41) [ 0.500 (95) 1
2 0.4071 (80) [ 0.500 (95) ]
3 0.385 (20) [ 0.500 (95) 1]
4 0.431 (58) [ 0.500 (95) 1
5 0.477 (74) [ 0.500 (95) 1
6 0.493 (89) [ 0.500 (95) 1]
E O 0.90031 (50) [ 1.00 (50) 1
1 1.8000 (10) [ 1.90 (50) 1
2 2.7023 (86) [ 2.80 (50) ]
3 3.603 (14) [ 3.70 (50) 1
4 4.503 (17) [ 4.60 (50) 1
5 5.403 (19) [ 5.50 (50) ]
6 6.303 (22) [ 6.40 (50) ]
Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0
E1/E0 = 1.99934 +- 0.0010096 E2/E0 = 3.0015 +- 0.00944816

al/a0 = 0.999537 +- 0.00248687 a2/a0 = 1.01093 +- 0.0168333
prior[’a’] = 0.5 +- 0.0952405

Reducing the width of the prior [’ a’ ]s from 0.5 to 0.1 increased 10gGBF from 227 to 234. The error for a2/a0
is 40% smaller, but the other results are not much affected — suggesting that the details of prior [’ a’ ] are not all
that important, which is confirmed by the error budgets generated in the next section. It is not surprising, of course,
that the optimal width is 0.1 since the mean values for the fit .p [’ a’ ]s are clustered around 0.4, which is 0.1 below
the mean value of the priors prior[’a’].

The Bayes factor, exp (fit .1ogGBF), is useful for deciding about fit functions as well as priors. Consider the
following two fits of the sort discussed in the previous section, one using just two terms in the fit function and one
using three terms:

khkkhkkhkkhkhkhkkhkhkhkhkkhkkhkhhkkhkkhkhkhhkkhhkhrhkkhkhdkhrhkkhhkhrhkhkhkxkhk nexp = 2
Least Square Fit:
chi2/dof [dof] = 0.47 [15] Q0 = 0.96 1ogGBF = 254.15 itns = 6
Parameters:
a0 0.4018 (40) [ 0.50 (50) ]
1 0.4018 (40) [ 0.50 (50) 1]
E O 0.90036 (50) [ 1.00 (50) ]
1 1.80036 (50) [ 1.90 (50) 1
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Settings:
svdcut = (le-15,1le-15) svdnum = (None,None) reltol/abstol = 0.0001/0
AR B R S R B I I I I I I I I b b b b b I g nexp = 3

Least Square Fit:

chi2/dof [dof] = 0.5 [15] Q = 0.94 1ogGBF = 243.12 itns = 4
Parameters:
a 0 0.4018 (40) [ 0.50 (50) ]
1 0.4018 (40) [ 0.50 (50) ]
2 8(10)e-06 [ 0.50 (50) ]
E O 0.90035 (50) [ 1.00 (50) 1]
1 1.80034 (50) [ 1.90 (50) ]
2 2.700 (10) [ 2.80 (50) ]
Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

Measured by their chi = *2s, the two fits are almost equally good. The Bayes factor for the first fit, however, is much
larger than that for the second fit. It says that the probability that our fit data comes from an underlying theory with
exactly two terms is exp (254 - 243) = 59, 874 times larger than the probability that it comes from a theory
with three terms. In fact, the data comes from a theory with only two terms since it was generated using the same
code as in the previous section but with x, y = make_data (2) insteadof x, y = make_data () inthe main
program.

1.8 Partial Errors and Error Budgets

We frequently want to know how much of the uncertainty in a fit result is due to a particular input uncertainty or subset
of input uncertainties (from the input data and/or from the priors). We refer to such errors as “partial errors” (or partial
standard deviations) since each is only part of the total uncertainty in the fit result. The collection of such partial errors,
each associated with a different input error, is called an “error budget” for the fit result. The partial errors from all
sources of input error reproduce the total fit error when they are added in quadrature.

Given the fit object (an 1sgfit.nonlinear_fit object) from the example in the section on Correlated Param-
eters, Gaussian Bayes Factor, for example, we can extract such information using gvar.GVar.partialsdev ()
— for example:

>>> E = fit.p['E’]

>>> a = fit.p[’a’]

>>> print (E[1] / E[0])

1.9994 +- 0.00106276

>>> print ((E[1] / E[0]) .partialsdev (fit.prior[’E’]))
0.000419219538523

>>> print ((E[1] / E[0]) .partialsdev (fit.prior[’a’]))
0.000158871440271

>>> print ((E[1] / E[0]) .partialsdev (y))
0.000952553004005

This shows that the total uncertainty in E[1] /E[0], 0.00106, is the sum in quadrature of a contribution 0.00042 due
to the priors specified by prior [’ E’ ],0.00016 due to prior [’ a’ ], and 0.00095 from the statistical errors in the
input data y.

There are two utility functions for tabulating results and error budgets. They require dictionaries of output results and
inputs, and use the keys from the dictionaries to label columns and rows, respectively, in an error-budget table:
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outputs = {'E1/E0’:E[1] / E[O0], 'E2/EO0’:E[2] / E[O],
"al/a0’:a[l] / al0], "a2/a0’:a[2] / al0]}

inputs = {'E’:fit.prioxr[’E’], 'a’:fit.prior[’'a’]l, 'y’ :v}

print (fit.fmt_values (outputs))

print (fit.fmt_errorbudget (outputs, inputs))

This gives the following output:

Values:
E2/EO0: 3.000(11)
E1/EQ: 1.9994(11)
a2/a0: 1.005(28)
al/a0: 0.9996(25)
Partial % Errors:
E2/EQ E1/EOQ a2/al al/a0
a 0.09 0.01 1.09 0.02
% 0.07 0.05 0.77 0.19
E 0.35 0.02 2.44 0.16
total 0.37 0.05 2.79 0.25

This table shows, for example, that the 0.37% uncertainty in E2/EO comes from a 0.09% contribution due to
prior[”a’], a0.07% contribution due to due to statistical errors in the fit data y, and a 0.35% contribution due to
prior[’E’], where, again, the total error is the sum in quadrature of the partial errors. This suggests that reducing
the statistical errors in the input y data would reduce the error in E2 /EO only slightly. On the other hand, more accu-
rate y data should significantly reduce the errors in E1 /EO and al/a0, where y is the dominant source of uncertainty.
In fact a four-fold reduction in the y errors reduces the E1/EQ error to 0.02% (from 0.05%) while leaving the E2 /EO
error at 0.37%.

1.9 y has No Error Bars

Occasionally there are fit problems where values for the dependent variable y are known exactly (to machine preci-
sion). This poses a problem for least-squares fitting since the chi « 2 function is infinite when standard deviations
are zero. How does one assign errors to exact ys in order to define a chi = » 2 function that can be usefully minimized?

It is almost always the case in physical applications of this sort that the fit function has in principle an infinite number
of parameters. It is, of course, impossible to extract information about infinitely many parameters from a finite number
of ys. In practice, however, we generally care about only a few of the parameters in the fit function. (If this isn’t the
case, give up.) The goal for a least-squares fit is to figure out what a finite number of exact ys can tell us about the
parameters we want to know.

The key idea here is to use priors to model the part of the fit function that we don’t care about, and to remove that
part of the function from the analysis by subtracting or dividing it out from the input data. To illustrate, consider
again the example described in the section on Correlated Parameters; Gaussian Bayes Factor. Let us imagine that
we know the exact values for y for each of x=1, 1.2, 1.4...2.6, 2.8. We are fitting this data with a sum
of exponentials a [1] rexp (-E[1] »x) where now we will assume that a priori we know that: E[0]=1.0(5),
E[i+1]-E[1]=0.9(2), and a[1]=0.5(5). Suppose that our goal is to find good estimates for E[0] and
al0].

We know that for some set of parameters

y = sum_1i=0..inf af[i]xexp(-E[1]~*x)
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for each x-y pair in our fit data. Given that a[0] and E[0] are all we want to know, we might imagine defining a
new, modified dependent variable ymod, equal to just a [0] xexp (-E[0] *x):

ymod = y — sum_i=1..inf al[i]l*exp(-E[1]*x)

We know everything on the right-hand side of this equation: we have exact values for y and we have a priori estimates
forthea[i] and E [i] with 1>0. So given means and standard deviations for every i>0 parameter, and the exact y,
we can in principle determine a mean and standard deviation for ymod. The strategy then is to compute the correspond-
ing ymod for every y and x pair, and then fit ymod versus x to the single exponential a [0] xexp (-E[0] «t ). That
fit will give values for a[0] and E [0] that reflect the uncertainties in ymod, which in turn originate in uncertainties
in our knowledge about the parameters for the i >0 exponentials.

It turns out to be quite simple to implement such a strategy using gvar .GVars. We convert our code by first mod-
ifying the main program so that it provides prior information to a subroutine that computes ymod. We will vary the
number of terms nexp that are kept in the fit, putting the rest into ymod as above (up to a maximum of 20 terms,
which is close enough to infinity):

def main () :

gv.ranseed([2009, 2010, 2011, 2012]) # initialize random numbers (opt.)
max_prior = make_prior (20) # maximum sized prior
p0 = None # make larger fits go faster (opt.)

for nexp in range(l, 7):

print(’************************************* nexp =, nexp)
fit_prior = gv.BufferDict () # part of max_pior used in fit
ymod_prior = gv.BufferDict () # part of max_prior absorbed in ymod
for k in max_prior:

fit_prior[k] = max_prior[k][:nexp]

ymod_prior[k] = max_prior[k] [nexp:]
x, y = make_data (ymod_prior) # make fit data
fit = lsqgfit.nonlinear_fit(data=(x, y), fcn=f, prior=fit_prior, pO0=p0)
print (fit.format (10)) # print the fit results
print ()
if fit.chi2/fit.dof<1l.:

p0 = fit.pmean # starting point for next fit (opt.)

We put all of our a priori knowledge about parameters into prior max_prior and then pull out the part we need for
the fit — that is, the first nexp terms. The remaining part of max_prior is used to correct the exact data, which
comes from a new make_data:

def make_data (ymod_prior): # make x, y fit data
X = np.arange(l., 10 = 0.2 + 1., 0.2)
ymod = f_exact (x) - f(x, ymod_prior)

return x, ymod

Running the new code produces the following output, where again nexp is the number of exponentials kept in the fit
(and 20-nexp is the number pushed into the modified dependent variable ymod):

khkkhkkhkkhkhkhkkhkhkhkhkkhkkhkhAhkkhkkhkhkhhkkhhkrhkkhkhkhrhkkhkhhrhkhkhhxkhk nexp = 1
Least Square Fit (input data correlated with prior):
chi2/dof [dof] = 0.051 [10] Q0 =1 1o0gGBF = 97.499 itns = 5
Parameters:
a o 0.4009 (14) [ 0.50 (50) 1
E O 0.90033 (62) [ 1.00 (50) 1
Fit
x[k] vy k] f(x[k],p)
1 0.15 (11) 0.16292 (47)
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1.2 0.128 (74) 0.13607 (38)
1.4 0.110 (52) 0.11365 (30)
1.6 0.093 (37) 0.09492 (24)
1.8 0.078 (26) 0.07928 (19)
2 0.066 (18) 0.06622 (15)
2.2 0.055 (13) 0.05531 (12)
2.4 0.0462 (93) 0.046192 (94)
2.6 0.0387 (66) 0.038581 (74)
2.8 0.0323 (47) 0.032223 (58)
Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0
R R I I I i I I I i I b b I I b b b b b b b b b b g nexp = 2

Least Square Fit (input data correlated with prior):

chi2/dof [dof] = 0.053 [10] 0 =1 1logGBF = 99.041 itns = 3
Parameters:
a0 0.4002 (13) [ 0.50 (50) ]
1 0.405 (36) [ 0.50 (50) ]
E O 0.90006 (55) [ 1.00 (50) ]
1 1.803 (30) [ 1.90 (54) ]
Fit
x [k] vy k] f(x[kl,p)
1 0.223 (45) 0.2293 (44)
1.2 0.179 (26) 0.1823 (28)
1.4 0.145 (15) 0.1459 (18)
1.6 0.1168 (90) 0.1174 (12)
1.8 0.0947 (53) 0.09492 (74)
2 0.0770 (32) 0.07711 (47)
2.2 0.0628 (19) 0.06289 (30)
2.4 0.0515 (11) 0.05148 (19)
2.6 0.04226 (67) 0.04226 (12)
2.8 0.03479 (40) 0.034784 (72)
Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0
Nk hkhkkhkhkhkkhkhkhkhhkhkhkhkhkhkrhkhkrkhkhkhkkhkhkhkhhkhrkhkhhkhrtk nexp = 3
Least Square Fit (input data correlated with prior):
chi2/dof [dof] = 0.057 [10] Q=1 1ogGBF = 99.845 itns = 4
Parameters:
a0 0.39998 (93) [ 0.50 (50) ]
1 0.399 (35) [ 0.50 (50) 1
2 0.401 (99) [ 0.50 (50) ]
E O 0.89999 (36) [ 1.00 (50) ]
1 1.799 (26) [ 1.90 (54) ]
2 2.70 (20) [ 2.80 (57) 1
Fit
x[k] y [k] f(x[k]l,p)
1 0.253 (19) 0.2557 (54)
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1.2 0.1968 (91) 0.1977 (28)
1.4 0.1545 (45) 0.1548 (15)
1.6 0.1224 (22) 0.12256 (76)
1.8 0.0979 (11) 0.09793 (39)
2 0.07885 (54) 0.07886 (20)
2.2 0.06391 (27) 0.06391 (10)
2.4 0.05206 (13) 0.052065 (52)
2.6 0.042602 (67) 0.042601 (26)
2.8 0.034983 (33) 0.034982 (13)
Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0
khkkhkkhkhkhkhkkhkhkhkhkkhkkhkhrhkkhkkhhhhkkhhkrhkkhkhkhrhkkhkhhrhkhkhxkx*k nexp = 4
Least Square Fit (input data correlated with prior):
chi2/dof [dof] = 0.057 [10] 0 =1 1logGBF = 99.835 itns = 4
Parameters:
a0 0.39995 (77) [ 0.50 (50) ]
1 0.399 (32) [ 0.50 (50) ]
2 0.40 (10) [ 0.50 (50) ]
3 0.40 (15) [ 0.50 (50) ]
E O 0.89998 (30) [ 1.00 (50) ]
1 1.799 (23) [ 1.90 (54) ]
2 2.70 (19) [ 2.80 (57) 1
3 3.61 (28) [ 3.70 (61) ]
Fit
x[k] y[k] f(x[kl,p)
1 0.2656 (78) 0.2666 (22)
1.2 0.2027 (32) 0.20297 (97)
1.4 0.1573 (13) 0.15737 (42)
1.6 0.12378 (54) 0.12381 (18)
1.8 0.09853 (22) 0.098540 (78)
2 0.079153 (93) 0.079155 (34)
2.2 0.064051 (39) 0.064051 (15)
2.4 0.052134 (16) 0.0521344 (64)
2.6 0.0426348 (67) 0.0426347 (29)
2.8 0.0349985 (28) 0.0349985 (13)
Settings:
svdcut = (le-15,1le-15) svdnum = (None,None) reltol/abstol = 0.0001/0
E1/E0 = 1.999(24) E2/E0 = 3.00(21)
al/a0 = 0.997(77) a2/a0 = 1.01(25)

Here weuse fit.format (10) to print out a table of x and y (actually ymod) values, together with the value of the
fit function using the best-fit parameters. There are several things to notice:

e Were we really only interested in a[0] and E[0], a single-exponential fit would have been adequate. This
is because we are in effect doing a 20-exponential fit even in that case, by including all but the first term as
corrections to y. The answers given by the first fit are correct (we know the exact values since we are using fake
data).

The ability to push uninteresting parameters into a ymod can be highly useful in practice since it is usually
much cheaper to incorporate those fit parameters into ymod than it is to include them as fit parameters — fits

1.9. y has No Error Bars 25



Isgfit Documentation, Release 4.4.4

with smaller numbers of parameters are usually a lot faster.

The chi+«2 and best-fit parameter means and standard deviations are almost unchanged by shifting terms
from ymod back into the fit function, as nexp increases. The final results for a [0] and E [0], for example,
are nearly identical in the nexp=1 and nexp=4 fits.

In fact it is straightforward to prove that best-fit parameter means and standard deviations, as well as chi*x2,
should be exactly the same in such situations provided the fit function is linear in all fit parameters. Here the
fit function is approximately linear, given our small standard deviations, and so results are only approximately
independent of nexp.

The uncertainty in ymod for a particular x decreases as nexp increases and as x increases. Also the nexp
independence of the fit results depends upon capturing all of the correlations in the correction to y. This is why
gvar .GVars are useful since they make the implementation of those correlations trivial.

Although we motivated this example by the need to deal with ys having no errors, it is straightforward to apply
the same ideas to a situation where the ys have errors. Again one might want to do so since fitting uninteresting
fit parameters is generally more costly than absorbing them into the y (which then has a modified mean and
standard deviation).

1.10 SVD Cuts and Roundoff Error

All of the fits discussed above have (default) SVD cuts of le-15. This has little impact in most of the problems, but
makes a big difference in the problem discussed in the previous section. Had we run that fit, for example, with an SVD
cut of le-19, instead of le-15, we would have obtained the following output:

Least Square Fit (input data correlated with prior):

chi2/dof [dof] = 0.057 [10] 0 =1 1ogGBF = 100.46 itns = 5
Parameters:
a0 0.39994 (77) [ 0.50 (50) ]
1 0.398 (32) [ 0.50 (50) ]
2 0.40 (10) [ 0.50 (50) 1]
3 0.40 (15) [ 0.50 (50) ]
E O 0.89997 (30) [ 1.00 (50) 1]
1 1.799 (23) [ 1.90 (54) ]
2 2.70 (19) [ 2.80 (57) 1
3 3.61 (28) [ 3.70 (61) 1]
Fit
x[k] y [k] f(x[k],p)
1 0.2656 (78) 0.267 (16)
1.2 0.2027 (32) 0.2030 (74)
1.4 0.1573 (13) 0.1574 (34)
1.6 0.12378 (54) 0.1238 (15)
1.8 0.09853 (22) 0.09854 (67)
2 0.079153 (93) 0.07915 (29)
2.2 0.064051 (39) 0.06405 (12)
2.4 0.052134 (1lo6) 0.052134 (41)
2.6 0.0426348 (67) 0.0426347 (92)
2.8 0.0349985 (28) 0.0349985 (40)
Settings:
svdcut = (le-19,None) svdnum = (None,None) reltol/abstol = 0.0001/0
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E1/EO
al/a0

2.00(72) E2/EO
1.0(2.3) a2/al

3.0(6.1)
1.0(6.8)

The standard deviations quoted for E1/EO, efc. are much too large compared with the standard deviations shown for
the individual parameters, and much larger than what we obtained in the previous section. This is due to roundoff
error. The standard deviations quoted for the parameters are computed differently from the standard deviations in
fit.p (which was used to calculate E1 /EQ). The former come directly from the curvature of the chi « x 2 function
at its minimum; the latter are related back to the standard deviations of the input data and priors used in the fit. The
two should agree, but they will not agree if the covariance matrix for the input y data is too ill-conditioned.

The inverse of the y covariance matrix is used in the chixx2 function that is minimized by
lsgfit.nonlinear_fit. Given the finite precision of computer hardware, it is impossible to compute this
inverse accurately if the matrix is singular or almost singular, and in such situations the reliability of the fit results
is in question. The eigenvalues of the covariance matrix in this example (for nexp=6) indicate that this is the case:
they range from 7.2e-5 down to 4. 2e—-26, covering 21 orders of magnitude. This is likely too large a range to be
handled with the 1618 digits of precision available in normal double precision computation. The smallest eigenvalues
and their eigenvectors are likely to be quite inaccurate, as is any method for computing the inverse matrix.

The standard solution to this common problem in least-squares fitting is to introduce an SVD cut, here called svdcut:

fit = nonlinear_fit (data=(x, ymod), fcn=f, prior=prior, pO=p0, svdcut=le-15)

Then the inverse of the y covariance matrix is computed from its eigenvalues and eigenvectors, but with any eigenvalue
smaller than svdcut times the largest eigenvalue replaced by the cutoff (that is, by svdcut times the largest eigen-
value). This limits the singularity of the covariance matrix, leading to improved numerical stability. The cost is less
precision in the final results since we are in effect decreasing the precision of the input y data. This is a conservative
move, but numerical stability is worth the tradeoff.

Note that taking svdcut=-1e-15, with a minus sign, causes the problematic modes to be dropped. This is a more
conventional implementation of SVD cuts, but here it results in much less precision than using svdcut=1e-15
(giving, for example, 1.993(69) for E1/EQ, which is almost three times less precise). Dropping modes is equivalent
to setting the corresponding variances to infinity, which is (obviously) much more conservative and less realistic than
setting them equal to the SVD-cutoff variance.

The error budget is interesting in this case. There is no contribution from the original y data since it was exact.
So all statistical uncertainty comes from the priors in max_prior, and from the SVD cut, which contributes since it
modifies the effective variances of several eigenmodes of the covariance matrix. The SVD contribution can be obtained
from fit.svdcorrection so the full error budget is constructed by the following code,

outputs = {’'E1/E0’:E[1] / E[Q0], "E2/EQ0’':E[2] / E[O0],
"al/a0’:al[l] / al[0], "a2/a0’:al[2] / al[0]}
inputs = {’E’:max_prior[’'E’], ’a’:max_prior[’a’], ’'svd’:fit.svdcorrection}
print (fit.fmt_values (outputs))
print (fit.fmt_errorbudget (outputs, inputs))

which gives:

Values:
E2/EQ0: 3.00(21)
E1/EQ: 1.999(24)
a2/a0: 1.01(25)
al/a0: 0.997(77)
Partial % Errors:
E2/EQ E1/EOQ a2/al al/a0
a 3.76 0.71 11.80 4.39
svd 0.29 0.10 0.13 0.55
E 5.87 0.99 22.35 6.30
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Here the contribution from the SVD cut is almost negligible.

Note that covariance matrices are rescaled so that all diagonal elements equal one before the SVD cut is applied. This
means, among other things, that uncorrelated errors — that is, diagonal sub-matrices of the covariance matrix — are
unaffected by SVD cuts. Applying an SVD cut of le-4, for example, to the following singular covariance matrix,

([ 1.0 1.0 0.0 ]
[ 1.0 1.0 0.0 ]
[ 0.0 0.0 1e-201],

gives a new, non-singular matrix:

[[ 1.0001 0.9999 0.0 1
[ 0.9999 1.0001 0.0 1
[ 0.0 0.0 le-201]

lsgfit.nonlinear_fit uses a default value for svdcut of le-15, and applies SVD cuts to the covariance
matrices from both the fit data and the prior. This default can be overridden as shown above, but for many problems it
is a good choice. Roundoff errors become more accute, however, when there are strong positive correlations between
different parts of the fit data or prior. Then much larger svdcuts may be needed.

The method 1sgfit.nonlinear_fit.check_roundoff () can be used to check for roundoff errors by
adding the line fit.check_roundoff () after the fit. It generates a warning if roundoff looks to be a problem.
This check is done automatically if debug=True is added to argument list of 1sgfit.nonlinear_ fit.

1.11 Bootstrap Error Analysis

Our analysis above assumes that every probability distribution relevant to the fit is approximately Gaussian. For
example, we characterize the input data for y by a mean and a covariance matrix obtained from averaging many
random samples of y. For large sample sizes it is almost certainly true that the average values follow a Gaussian
distribution, but in practical applications the sample size could be too small. The statistical bootstrap is an analysis
tool for dealing with such situations.

The strategy is to: 1) make a large number of “bootstrap copies” of the original input data that differ from each other
by random amounts characteristic of the underlying randomness in the original data; 2) repeat the entire fit analysis
for each bootstrap copy of the data, extracting fit results from each; and 3) use the variation of the fit results from
bootstrap copy to bootstrap copy to determine an approximate probability distribution (possibly non-Gaussian) for the
each result.

Consider the code from the previous section, where we might reasonably want another check on the error estimates
for our results. That code can be modified to include a bootstrap analysis by adding the following to the end of the
main () subroutine:

Nbs = 40 # number of bootstrap copies
outputs = {'E1/E0":[], ’"E2/EQ’:[], "al/aO’:[]1, "a2/a0’":[1} # results
for bsfit in fit.bootstrap_iter (n=Nbs) :

E = bsfit.pmean[’'E’] # best—-fit parameter values
a = bsfit.pmean[’a’] # (ignore errors)
outputs[’EL1/E0" ] .append(E[1] / E[0]) # accumulate results
outputs[’'E2/E0’ ] .append(E[2] / E[O0])
outputs[’al/a0’].append(al[l] / al[0])

1/ al0])

outputs['EL’ ] .append(E[1])
outputs[’al’].append(all])

’
’

[
[
outputs[’a2/a0’] .append(al?2
[
[
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# extract "means" and "standard deviations" from the bootstrap output;

# print using .fmt () to create compact representation of GVars

outputs = gv.dataset.avg_data (outputs, bstrap=True)

print (' Bootstrap results:’)

print ("E1/E0 =’, outputs[’'E1/E0"].fmt (), 7 E2/ELl =’, outputs[’E2/E0’].fmt())
print ("al/a0 =’, outputs[’al/al0’].fmt(), ’ a2/a0 =", outputs[’a2/al0’].fmt())
print ("E1 =’, outputs[’El"].fmt (), '’ al =", outputs[’al’].fmt())

The results are consistent with the results obtained directly from the fit (when using svdcut=1e-15):

Bootstrap results:

E1/E0 = 1.999(17) E2/E1 2.98(18)
al/a0 = 0.995(55) a2/a0 0.97(28)
El1 = 1.799(16) al = 0.398(23)

In particular, the bootstrap analysis confirms our previous error estimates (to within 10-30%, since Nbs=40).
When Nbs is small, it is often safer to use the median instead of the mean as the estimator, which is what
gv.dataset.avg_data does because flag bstrap is set to True.

1.12 Positive Parameters

The priors for 1sgfit.nonlinear_fit are all Gaussian. There are situations, however, where other distributions
would be desirable. One such case is where a parameter is known to be positive, but is close to zero in value (“close”
being defined relative to the a priori uncertainty). For such cases we would like to use non-Gaussian priors that force
positivity — for example, priors that impose log-normal or exponential distributions on the parameter. Ideally the
decision to use such a distribution would be made on a parameter- by-parameter basis, when creating the priors, and
would have no impact on the definition of the fit function itself.

lsqgfit provides a decorator, 1sgfit.transform_p, for fit functions that makes this possible. This decorator
only works for fit functions that use dictionaries for their parameters. Given a prior prior for a fit, the decorator is
used in the following way: for example,

@lsgfit.transform p(prior.keys (), 0)
def fitfcn(p):

when the parameter argument is the first argument of the fit function, or

@lsgfit.transform p(prior.keys (), 1)
def fitfcn(x, p):

when the parameter argument is the second argument of the fit function (see the 1sgfit.transform_p docu-
mentation for more detail). Consider any parameter p [’ XX’ ] used in fitfcn. The prior distribution for that
parameter can now be turned into a log-normal distribution by replacing prior [’ XX’ ] with prior [’ logXX’ ]
(orprior[’log (XX) '’ 1) when defining the prior, thereby assigning a Gaussian distribution to 1 ogXX rather than
to XX. Nothing need be changed in the fit function, other than adding the decorator. The decorator automatically
detects parameters whose keys begin with  1og’ and adds new parameters to the parameter-dictionary for fit fcn
that are exponentials of those parameters.

To illustrate consider a simple problem where an experimental quantity y is known to be positive, but experimental
errors mean that measured values can often be negative:

import gvar as gv
import 1lsgfit

y = gv.gvar ([
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-0.17(20)", "-0. 03(20)’ r-0.39(20)", "0.10(20)", "=-0.03(20)",
"0.06(20)", '=0.23(20)", "-0.23(20)", ’*O 15(20)", "-0.01¢(20)",
-0.12(20)", ’0.05( 0y, "-0.09(20)", -0.36(20)", "0.09(20)",
-0.07(20)", "-0.31(20)", "0.12(20)", "0.11(20)", 70.13(20)"

1)

We want to know the average value a of the ys and so could use the following fitting code:

prior = gv.BufferDict (a=gv.gvar(0.02, 0.02)) # a = avg value of y’s

def fcn(p, N=len(y

)) s
return N x [p[’a’

11

fit = lsgfit.nonlinear_fit (prior=prior, data=y, fcn=fcn)
print (fit)
print (‘a =’, fit.p[’a’].fmt())

where we are assuming a priori information that suggests the average is around 0.02. The output from this code is:

Least Square Fit:

chi2/dof [dof] = 0.84 [20] Q = 0.67 logGBF = 5.3431 itns = 2
Parameters:
a 0.004 (18) [ 0.020 (20) ]
Settings:
svdcut = (le—-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

a = 0.004(18)

This is not such a useful result since much of the one-sigma range for a is negative, and yet we know that a must be
postive.

A better analysis is to use a log-normal distribution for a:

prior = gv.BufferDict (loga=gv.log(gv.gvar(0.02, 0.02))) # loga not a

@lsgfit.transform p(prior.keys (), 0)

def fcn(p, N=len(y)):
return N » [p[’a’]]

fit = lsgfit.nonlinear_fit (prior=prior, data=y, fcn=fcn)
print (fit)
print ("a =’, fit.transformed p[’a’].fmt()) # exp(loga)

The fit parameter is now log (a) rather than a itself, but we are able to use the identical fit function. Here
fit.transformed_p isthe same as £it .p butaugmented to include the exponentials of any log-normal variables
— that is, a as well as 1oga. Rather than including all keys, the decorator can be written with a list containing just
the variables to be transformed: here, @1sgfit.transform_p ([’ loga’], 0).

The result from this fit is

Least Square Fit:

chi2/dof [dof] = 0.85 [20] Q = 0.65 1ogGBF = 5.252 itns = 12
Parameters:
loga -4.44 (97) [ =3.9 (1.0) 1
Settings:
svdcut = (le-15,1le-15) svdnum = (None,None) reltol/abstol = 0.0001/0
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a = 0.012(11)

which is more compelling. The “correct” value for a here is 0.015 (from the method used to generate the ys).

lsgfit.transform_p () also allows parameters to be replaced by their square roots as fit parameters — for ex-
ample, define prior [’ sqgrt (a)’] (or prior [’ sqgrta’]) rather than prior [’ a’] when creating the prior.
This again guarantees positive parameters. The prior for p[’a’ ] is an exponential distribution if the mean of
pl/sgrt(a)’’] is zero. Using prior[’sqgrt(a)’’] in place of prior [’ a’] in the example above leads
toa = 0.010(13), which is almost identical to the result obtained from the log-normal distribution.

1.13 Troubleshooting

lsgfit.nonlinear_fit error messages that come from inside the gs/ routnines doing the fits are sometimes
less than useful. They are usually due to errors in one of the inputs to the fit (that is, the fit data, the prior, or the fit
function). Setting debug=True in the argumentlistof 1sgfit.nonlinear_ fit mightresultin more intelligible
error messages. This option also causes the fitter to check for significant roundoff errors in the matrix inversions of
the covariance matrices.

Occasionally 1sgfit.nonlinear_fit appears to go crazy, with gigantic chi*«*2s (e.g., 1e78). This could be
because there is a genuine zero-eigenvalue mode in the covariance matrix of the data or prior. Such a zero mode
makes it impossible to invert the covariance matrix when evaluating chi* 2. One fix is to include SVD cuts in the
fit by setting, for example, svdcut=(le-14,1le-14) inthecallto 1sgfit.nonlinear_fit. These cuts will
exclude exact or nearly exact zero modes, while leaving important modes mostly unaffected.

Even if the SVD cuts work in such a case, the question remains as to why one of the covariance matrices has a zero
mode. A common cause is if the same gvar .GVar was used for more than one prior. For example, one might think
that

>>> import gvar as gv
>>> z = gv.gvar(l, 1)
>>> prior = gv.BufferDict (a=z, b=2z)

creates a prior 1£1 for each of parameter a and parameter b. Indeed each parameter separately is of order 1=£1, but
in a fit the two parameters would be forced equal to each other because their priors are both set equal to the same
gvar.GVar, z:

>>> print (prior[’a’], prior[’'b’])
1 +- 11 +-1

>>> print (prior[’a’]-prior[’'b’])
0 +- 0

That is, while parameters a and b fluctuate over a range of 1+1, they fluctuate together, in exact lock-step. The
covariance matrix for a and b must therefore be singular, with a zero mode corresponding to the combination a—b; it
is all 1s in this case:

>>> import numpy as np

>>> cov = gv.evalcov(prior.flat) # prior’s covariance matrix
>>> print (np.linalg.det (cov)) # determinant 1s zero
0.0

This zero mode upsets nonlinear_fit (). If a and b are meant to fluctuate together then an SVD cut as above will
give correct results (with a and b being forced equal to several decimal places, depending upon the cut). Of course,
simply replacing b by a in the fit function would be even better. If, on the other hand, a and b were not meant to
fluctuate together, the prior should be redefined:
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>>> prior = gv.BufferDict (a=gv.gvar(l, 1), b=gv.gvar(l, 1))

where now each parameter has its own gvar.GVar.
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CHAPTER
TWO

GVAR - GAUSSIAN RANDOM VARIABLES

2.1 Introduction

This module provides tools for representing and manipulating Gaussian random variables numerically. A Gaussian
variable is a random variable that represents a fypical random number drawn from a particular Gaussian (or normal)
probability distribution; more precisely, it represents the entire probability distribution, and not, for example, a partic-
ular random number drawn from that distribution. A given Gaussian variable x is therefore completely characterized
by its mean x . mean and standard deviation x . sdev.

A mathematical function of a Gaussian variable can be defined as the probability distribution of function values
obtained by evaluating the function for random numbers drawn from the original distribution. The distribution of
function values is itself approximately Gaussian provided the standard deviation of the Gaussian variable is sufficiently
small. Thus we can define a function £ of a Gaussian variable x to be a Gaussian variable itself, with

f(x) .mean = f(x.mean)

f(x).sdev = x.sdev |f’ (x.mean) |,

which follows from linearizing the x dependence of £ (x) about point x . mean. (This obviously fails at an extremum
of £ (x), where £’ (x)=0.)

The last formula, together with its multidimensional generalization, leads to a full calculus for Gaussian random
variables that assigns Gaussian-variable values to arbitrary arithmetic expressions and functions involving Gaussian
variables. This calculus is useful for analyzing the propagation of statistical and other random errors (provided the
standard deviations are small enough).

A multidimensional collection x [1] of Gaussian variables is characterized by the means x [1] . mean for each vari-
able, together with a covariance matrix cov[i, j]. Diagonal elements of cov specify the standard deviations
of different variables: x[1] .sdev = cov[i, 1]**0.5. Nonzero off-diagonal elements imply correlations be-
tween different variables:

covli, 31 = <x[il*x[j]> - <x[i]> *» <x[j]>

where <y> denotes the expectation value or mean for a random variable y.

2.2 Creating Gaussian Variables

An object of type gvar.GVar represents a single Gaussian variable. Such an object can be created for a single
variable, with mean xmean and standard deviation xsdewv (both scalars), using:

X = gvar.gvar (xmean, xsdev).

This function can also be used to convert strings like ' =72.374 (22) " or ' 511.2 +- 0.3’ into gvar.GVars:
for example,
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>>> import gvar

>>> x = gvar.gvar (3.1415, 0.0002)
>>> print (x)

3.1415 +- 0.0002

>>> x = gvar.gvar ("3.1415(2)")
>>> print (x)

3.1415 +- 0.0002

This gvar .GVar can be converted to a more compact string using the GVar . fmt () method: for example,

>>> print (x.fmt (4))
3.1415(2)

>>> print (x.fmt (5))
3.14150(20)

>>> print (x.fmt ())
3.14150(20)

where the argument is the number of decimal places retained. (Omit the argument and fmt () will adjust the number
of decimal places automatically to display the error to two significant figures.)

Function gvar.asgvar (x) returns x if itis a gvar . GVar; otherwise it returns gvar (x) .

gvar.GVars are far more interesting when used to describe multidimensional distributions, especially if there are
correlations between different variables. Such distributions are represented by collections of gvar.GVars in one
of two standard formats: 1) numpy type arrays of gvar.GVars (any shape); or, more flexibly, 2) Python dictio-
naries whose values are gvar.GVars or arrays of gvar.GVars. Most functions in gvar that handle multiple
gvar.GVars work with either format, and if they return multidimensional results do so in the same format as the
inputs (that is, arrays or dictionaries). Any dictionary is converted internally into a specialized (ordered) dictionary
of type gvar .Buf ferDict, and dictionary-valued results are also gvar.BufferDicts. gvar.BufferDicts
are also useful for archiving gvar . GVars, since they may be pickled using Python’s pickle module; gvar.GVars
cannot be pickled otherwise. A pickled gvar.BufferDict preserves any correlations that exist between the dif-
ferent gvar.GVarsin it.

To create an array of gvar . GVars with mean values specified by array xmean and covariance matrix xcov, use

X = gvar.gvar (xmean, XCovV)

where array x has the same shape as xmean (and xcov.shape = xmean.shape+xmean.shape). Then each
element x [i] of a one-dimensional array, for example, is a gvar . GVar where:

x[1] .mean = xmean[i] # mean of x[1]

x[1].val = xmean[i] # same as x[1].mean
x[1i].sdev = xcov[i, 1]1%x+x0.5 # std deviation of x[i]
x[i].var = xcov[i, 1] # variance of x[1]

gvar.GVars can be used in arithmetic expressions, just like Python floats. These expressions result in new
gvar .GVars whose means and standard deviations are determined from the original covariance matrix. The arith-
metic expressions can include calls to standard functions including: exp, log, sqgrt, sin, cos, tan,
arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh, arctanh.

As an example,

>>> x, y = gvar.gvar([0.1, 10.], [[0.015625, 0.1, [O., 4.11)
>>> print ('x =', x, '/ v =", v)
x = 0.1 +- 0.125 y = 10 +- 2

makes x and y gvar.GVars with standard deviations sigma_x=0.125 and sigma_y=2, and, in this case, no
correlation between x and y (since cov [1, 3j]=0 when i!=7). If now we set, for example,
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>>> f = x + vy
>>> print (£ =’, f)
f =10.1 +- 2.0039

then f isa gvar.GVar with
f.var = df/dx cov[0, 0] df/dx + df/dx cov[0, 1] df/dy +
= 2.0039%%2
where cov is the original covariance matrix used to define x and y (in gvar.gvar). Note that while £ and y
separately have 20% uncertainties in this example, the ratio £/y has much smaller errors:
>>> print (f / y)
1.01 +- 0.012659
This happens, of course, because the errors in £ and y are highly correlated (since the error in £ comes mostly from
).

It is sometimes useful to know how much of the uncertainty in some quantity is due to a particular input uncertainty.
Continuing the example above, for example, we might want to know how much of fs standard deviation is due to the
standard deviation of x and how much comes from y. This is easily computed (for the example above):

>>> print (f.partialsdev (x)) # uncertainty in f due to x

0.125

>>> print (f.partialsdev (y)) # uncertainty in f due to y

2.0

>>> print (f.partialsdev(x, Vy)) # uncertainty in f due to x and y
2.00390244274

>>> print (f.sdev) # should be the same

2.00390244274

gvar.gvar () can also be used to convert strings or tuples stored in arrays or dictionaries into gvar .GVars: for
example,

>>> garray = gvar.gvar([’2(1)’, "10+-5", (99, 3), gvar.gvar (0, 2)1)

>>> print (garray)

[2 4= 1 10 += 5 99 +- 3 0 +- 2]

>>> gdict = gvar.gvar(dict(a="2(1)’, b=["10+-5", (99, 3), gvar.gvar(0, 2)1))
>>> print (gdict)

{ra’: 2 +- 1, "b’: array([10 +- 5, 99 +- 3, 0 +- 2], dtype=obiject)}

If the covariance matrix in gvar . gvar is diagonal, it can be replaced by an array of standard deviations (square roots
of diagonal entries in cov). The example above, therefore, is equivalent to:

>>> x, Yy gvar.gvar ([0.1, 10.], [0.125, 2.1)

>>> print ('x =", x, '/ v =", V)
x = 0.1 +- 0.125 y = 10 +- 2

2.3 Computing Covariance Matrices

The covariance matrix for a set of gvar.GVars, g0 gl ..., can be computed using
gvar.evalcov([g0, gl...]) —-> cov_g
where cov_g[1i, Jj] gives the covariance between gi and gj. Instead of a list or array of gs, one can also give

a dictionary g where g [k] is a gvar.GVar. In this case gvar.evalcov () returns a doubly-indexed dictionary
cov_g[kl] [k2] where keys k1, k2 areing.
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Using the example from the previous section, the code

>>> x, y = gvar.gvar([0.1, 10.], [[0.015625, 0.1, [0., 4.11)

>>> f = x+ty
>>> print (gvar.evalcov([x, y, f1))
[[ 0.015625 O. 0.015625]

[ 0. 4. 4. ]

[ 0.015625 4. 4.015625171]

confirms that x and y are uncorrelated with each other, but strongly correlated with f.

It is often convenient to group related gvar . GVars together in a dictionary rather than an array since dictionaries
are far more flexible. gvar.evalcov can be used to evaluate the covariance matrix for a dictionary containing
gvar .GVars and/or arbitrary arrays of gvar.GvVars:

>>> d = dict (x=x, y=y, g=I[xty, x-VvI])
>>> cov = gvar.evalcov (d)

>>> print (cov[’'x’, 'x'])

0.015625

>>> print (cov[’'x’, 'v’'])

0.0

>>> print (cov['x’, 'g’])

[ 0.015625 0.015625]

2.4 Random Number Generators

gvar .GVars represent probability distributions. It is possible to use them to generate random numbers from those
distributions. For example, in

>>> z = gvar.gvar (2.0, 0.5)
>>> print (z())
2.29895701465
>>> print (z())
3.00633184275
>>> print (z () )
1.92649199321

calls to z () generate random numbers from a Gaussian random number generator with mean z .mean=2.0 and
standard deviation z . sdev=0.5.

To obtain random arrays from an array g of gvar.GVars use giter=gvar.raniter(g) (see
gvar.raniter ()) to create a random array generator giter. Each call to next (giter) generates a new
array of random numbers. The random number arrays have the same shape as the array g of gvar.GVars and have
the distribution implied by those random variables (including correlations). For example,

>>> a = gvar.gvar (1.0, 1.0)
>>> da = gvar.gvar (0.0, 0.1)
>>> g = [a, atda]

>>> giter = gvar.raniter (g)
>>> print (next (giter))

[ 1.51874589 1.59987422]
>>> print (next (giter))
[-1.39755111 -1.24780937]
>>> print (next (giter))

[ 0.49840244 0.50643312]

Note how the two random numbers separately vary over the region 141 (approximately), but the separation between
the two is rarely more than 0£0.1. This is as expected given the strong correlation between a and a+da.
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gvar.raniter (g) also works when g is a dictionary (or gvar.BufferDict) whose entries g[k] are
gvar.GVars or arrays of gvar .GVars. In such cases the iterator returns a dictionary with the same layout:

>>> g = dict (a=gvar.gvar (0, 1), b=[gvar.gvar (0, 100), gvar.gvar (10, 1le-3)])
>>> print (g)

{ra’: 0 +- 1, "b’: [0 +- 100, 10 +- 0.0017]}

>>> giter = gvar.raniter (g)

>>> print (next (giter))

{"a’": -0.88986130981173306, ’'b’: array([-67.02994213, 9.999737071) }

>>> print (next (giter))

{a’: 0.21289976681277872, ’'b’: array ([ 29.9351328 , 10.00008606])}

One use for such random number generators is dealing with situations where the standard deviations are too large to
justify the linearization assumed in defining functions of Gaussian variables. Consider, for example,

>>> x = gvar.gvar(l., 3.)
>>> print (cos (x))
0.540302 +- 2.52441

The standard deviation for cos (x) is obviously wrong since cos (x) can never be larger than one. To obtain the
real mean and standard deviation, we generate a large number of random numbers xi from x, compute cos (xi)
for each, and compute the mean and standard deviation for the resulting distribution (or any other statistical quantity,
particularly if the resulting distribution is not Gaussian):

# estimate mean,sdev from 1000 random x’s

>>> ran_x = numpy.array([x() for in range(1000)])

>>> ran_cos = numpy.cos (ran_x)

>>> print (‘mean =’, ran_cos.mean(), ' std dev =’, ran_cos.std())
mean = 0.0350548954142 std dev = 0.718647118869

# check by doing more (and different) random numbers

>>> ran_x = numpy.array([x() for in range (100000)])

>>> ran_cos = numpy.cos (ran_x)

>>> print (‘mean =’, ran_cos.mean(), ' std dev =’, ran_cos.std())
mean = 0.00806276057656 std dev = 0.706357174056

This procedure generalizes trivially for multidimensional analyses, using arrays or dictionaries with
gvar.raniter ().

Finally note that bootstrap copies of gvar .GVars are easily created. A bootstrap copy of gvar.GVar x £ dxis
another gvar . GVar with the same width but where the mean value is replaced by a random number drawn from the
original distribution. Bootstrap copies of a data set, described by a collection of gvar .GVars, can be used as new
(fake) data sets having the same statistical errors and correlations:

>>> g = gvar.gvar([1.1, 0.8], [[0.01, 0.005], [0.005, 0.01]11)
>>> print (qg)
[1.1 +- 0.1 0.8 +- 0.1]

>>> print (gvar.evalcov(g)) # print covariance matrix

[[ 0.01 0.005]
[ 0.005 0.01 1]

>>> gbs_iter = gvar.bootstrap_iter (qg)

>>> gbs = next (gbs_iter) # bootstrap copy of f

>>> print (gbs)

[1.13881 +- 0.1 0.896066 +— 0.1] # different means

>>> print (gvar.evalcov (gbs))

[[ 0.01 0.005] # same covariance matrix
[ 0.005 0.01 ]]

Such fake data sets are useful for analyzing non-Gaussian behavior, for example, in nonlinear fits.
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2.5 Limitations

The most fundamental limitation of this module is that the calculus of Gaussian variables that it assumes is only
valid when standard deviations are small (compared to the distances over which the functions of interest change
appreciably). One way of dealing with this limitation is described above in the section on Random Number Generators.

Another potential issue is roundoff error, which can become problematic if there is a wide range of standard deviations
among correlated modes. For example, the following code works as expected:

>>> from gvar import gvar, evalcov

>>> tiny = le-4

>>> a = gvar (0., 1.)

>>> da = gvar (tiny, tiny)

>>> a, ada = gvar([a.mean, (atda).mean], evalcov([a, atda]l])) # = a,a+da
>>> print (ada-a) # should be da again

0.0001 +- 0.0001

Reducing t iny, however, leads to problems:

>>> from gvar import gvar, evalcov

>>> tiny = le-8

>>> a = gvar (0., 1.)

>>> da = gvar (tiny, tiny)

>>> a, ada = gvar([a.mean, (atda).mean], evalcov([a, atdal)) # = a, a+tda
>>> print (ada-a) # should be da again

le-8 +- 0

Here the callto gvar.evalcov () creates a new covariance matrix for a and ada = a+da, but the matrix does not
have enough numerical precision to encode the size of da‘s variance, which gets set, in effect, to zero. The problem
arises here for values of t iny less than about 2e-8 (with 64-bit floating point numbers — tiny«* =2 is what appears
in the covariance matrix).

2.6 Implementation Notes; Derivatives; Optimizations

There are two types of gvar.GVar: the underlying independent variables, created with calls to gvar.gvar ();
and variables which are obtained from functions of the underlying variables. Each gvar.GVar must keep track
of three pieces of information: 1) its mean value; 2) its derivatives with respect to the underlying variables; and 3)
the covariance matrix for the underlying variables. The derivatives and covariance matrix allow one to compute the
standard deviation of the gvar.GVar as well as correlations between it and any other function of the underlying
variables. A gvar.GVar can be constructed at a very low level by supplying all three pieces of information — for
example,

f = gvar.gvar (fmean, fder, cov)

where fmean is the mean, fder is an array where fder [1] is the derivative of £ with respect to the i-th underlying
variable (numbered in the order in which they were created using gvar.gvar () ), and cov is the covariance matrix
for the underlying variables (easily obtained from an existing gvar.GVar x using x .cov).

The derivatives stored in a gvar.GVar are sometimes useful. Consider, for example, an array x each of whose
elements was created by a call to gvar.gvar (): x[1] = gvar.gvar (xi_mean, xi_sdev). Then deriva-
tives of a function f (x) with respect to the x[i] can be computed from the gvar.GVar fx = £ (x) using
fx.dotder (x[1i] .der), which equals df (x) /dx [i] atthe point x specified by the means of the x [1]s. Note
that this trick only works because the x [ 1] are among the underlying (original) gvar . GVars (and not combinations
of these).
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When there are lots of underlying variables, the number of derivatives can become rather large, potentially (though not
necessarily) leading to slower calculations. One way to alleviate this problem, should it arise, is to separate the under-
lying variables into groups that are never mixed in calculations and to use different gvar.gvar () s when generating
the variables in different groups. New versions of gvar.gvar () are obtained using gvar.switch_gvar (): for
example,

import gvar

x = gvar.gvar(...)
= gvar.gvar(...)
z = f(x, vy)

... other manipulations involving x and y
gvar.switch_gvar ()

a = gvar(...)
b = gvar(...)
c = g(a, b)

other manipulations involving a and b (but not x and vy)

Here the gvar.gvar () used to create a and b is a different function than the one used to create x and y. A derived
quantity, like c, knows about its derivatives with respect to a and b, and about their covariance matrix; but it carries no
derivative information about x and y. Absent the switch_gvar line, c would have information about its derivatives
with respect to x and y (zero derivative in both cases) and this would make calculations involving c slightly slower
than with the switch_gvar line. Usually the difference is negligible — it used to be more important, in earlier
implementations of gvar .GVar before sparse matrices were introduced to keep track of covariances. Note that the
previous gvar.gvar () can be restored using gvar.restore_gvar ().

gvar.GVars are designed to work well with numpy arrays. They can be combined in arithmetic expressions with
arrays of numbers or of gvar . GVars; the results in both cases are arrays of gvar .GVars.

Arithmetic operators + — % / *x == != <> += —= x= /=are all defined. gvar.GVars are not ordered so
> >= < <= are not defined. Two gvar.GVars are equal only if their means and derivatives are equal, and their
covariance matrices the same. A gvar.GVar x is defined to equal a non-gvar.GVar y only if x.mean == y
and x.sdev == 0.

2.7 Utilities

The function used to create Gaussian variable objects is:

gvar.gvar (...)
Create one or more new gvar .GVars.

Each of the following creates new gvar.GVars:

gvar.gvar (x, xsdev)
Returns a gvar . GVar with mean x and standard deviation xsdev. Returns an array of gvar .GVars if
x and xsdev are arrays with the same shape; the shape of the result is the same as the shape of x.

gvar.gvar (x, xcov)
Returns an array of gvar.GVars with means given by array x and a covariance matrix given by array
xcov, where xcov.shape = 2xx.shape. The result has the same shape as x.

gvar.gvar ((x, xsdev))
Returns a gvar.GVar with mean x and standard deviation xsdev.

gvar.gvar (xstr)
Returns a gvar.GVar corresponding to string xst r which is either of the form "xmean +- xsdev"
or "x (xerr) " (see GVar.fmt ()).
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gvar.gvar (xgvar)
Returns gvar.GVar xgvar unchanged.

gvar .gvar (xdict)

Returns a dictionary (BufferDict) b where b[k] = gvar (xdict [k]) for every key in dictionary
xdict. The values in xdict, therefore, can be strings, tuples or gvar .GVars (see above), or arrays of
these.

gvar.gvar (xarray)
Returns an array a having the same shape as xarray where every element a[i...] =
gvar (xarray[i...]). The values in xarray, therefore, can be strings, tuples or gvar.GVars
(see above).

gvar.gvar is actually an object of type gvar .GVarFactory.

Means, standard deviations, variances, formatted strings, and covariance matrices can be extracted from arrays (or
dictionaries) of gvar .GVars using:

gvar.mean (g)
Extract means from gvar.GVarsin g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Result has the same layout as g.

gvar.sdev(g)
Extract standard deviations from gvar.GVarsin g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Result has the same layout as g.

gvar.var (g)
Extract variances from gvar.GVarsin g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar .GVars or arrays of
gvar.GVars. Result has the same layout as g.

gvar . fmt (g, ndecimal=None, sep="")
Format gvar.GVarsin g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. BEach gvar.GVar gi in g is replaced by the string generated by gi . fmt (ndecimal, sep).
Result has same structure as g.

gvar.evalcov (g)
Compute covariance matrix for elements of array/dictionary g.

If g is an array of gvar.GVars, evalcov returns the covariance matrix as an array with shape
g.shape+g.shape. If g is a dictionary whose values are gvar.GVars or arrays of gvar.GVars, the
result is a doubly-indexed dictionary where cov [k1, k2] is the covariance for g [k1] and g [k2].

gvar.uncorrelated (gl/, g2)
Return True if gvar.GVarsin gl uncorrelated with those in g2.

gl and g2 can be gvar.GVars, arrays of gvar .GVars, or dictionaries containing gvar .GVars or arrays
of gvar.GVars.

gvar .GVars contain information about derivatives with respect to the independent gvar .GVars from which they
were constructed. This information can be extracted using:

gvar.deriv (g, x)
Compute first derivatives wrt x of gvar.GVarsin g.
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g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar .GVars or arrays of
gvar .GVars. Result has the same layout as g.

x must be an independent gvar .GVar, which is a gvar.GVar created by a call to gvar.gvar () (e.g.,
x = gvar.gvar (xmean, xsdev))ora function £ (x) of such a gvar.GvVar. (More precisely, x . der
must have only one nonzero entry.)

The following function creates an iterator that generates random arrays from the distribution defined by array (or
dictionary) g of gvar .GVars. The random numbers incorporate any correlations implied by the gs.

gvar.raniter (g, n=None, svdcut=None, svdnum=None, rescale=True)
Return iterator for random samples from distribution g

The gaussian variables (gvar .GVar objects) in array (or dictionary) g collectively define a multidimensional
gaussian distribution. The iterator defined by raniter () generates an array (or dictionary) containing random
numbers drawn from that distribution, with correlations intact.

The layout for the result is the same as for g. So an array of the same shape is returned if g is an array. When g
is a dictionary, individual entries g [k ] may be gvar . GVars or arrays of gvar . GVars, with arbitrary shapes.

raniter () also works when g is a single gvar .GVar, in which case the resulting iterator returns random
numbers drawn from the distribution specified by g.

Parameters

* g (array or dictionary or BufferDict or GVar) — An array (or dictionary) of objects of type
gvar.GVar;oragvar.GVar.

* n — Maximum number of random iterations. Setting n=None (the default) implies there is
no maximum number.

* svdcut (None or number) — If positive, replace eigenvalues of the covariance matrix of g
with svdcut x (max eigenvalue); if negative, discards eigenmodes with eigenvalues
smaller than svdcut » (max eigenvalue);ignore if set to None.

* svdnum (None or positive int) —If positive, keep only the modes with the largest svdnum
eigenvalues in the covariance matrix for g; ignore if set to None or negative.

* rescale (bool) — Covariance matrix is rescaled so that diagonal elements equal 1 if
rescale=True.

Returns An iterator that returns random arrays or dictionaries with the same shape as g drawn from
the gaussian distribution defined by g.

gvar .bootstrap_iter (g, n=None, svdcut=None, svdnum=None, rescale=True)
Return iterator for bootstrap copies of g.

The gaussian variables (gvar .GVar objects) in array (or dictionary) g collectively define a multidimensional
gaussian distribution. The iterator created by bootstrap_iter () generates an array (or dictionary) of new
gvar.GVars whose covariance matrix is the same as g‘s but whose means are drawn at random from the
original g distribution. This is a bootstrap copy of the original distribution. Each iteration of the iterator has
different means (but the same covariance matrix).

bootstrap_iter () also works when g is a single gvar . GVar, in which case the resulting iterator returns
bootstrap copies of the g.

Parameters

* g (array or dictionary or BufferDict) — An array (or dictionary) of objects of type
gvar.GVar.

* n — Maximum number of random iterations. Setting n=None (the default) implies there is
no maximum number.
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* svdcut (None or number) — If positive, replace eigenvalues of the covariance matrix of g
with svdcut * (max eigenvalue); if negative, discards eigenmodes with eigenvalues
smaller than svdcut » (max eigenvalue);ignore if set to None.

* svdnum (None or positive int)— If positive, keep only the modes with the largest svdnum
eigenvalues in the covariance matrix for g; ignore if set to None or negative.

* rescale (bool) — Covariance matrix is rescaled so that diagonal elements equal 1 before
applying svd cuts if rescale=True.

Returns An iterator that returns bootstrap copies of g.

gvar .ranseed (a)

Seed random number generators with tuple seed.

Argument seed is a tuple of integers that is used to seed the random number generators used by numpy and
random (and therefore by gvar). Reusing the same seed results in the same set of random numbers.

Parameters seed (fuple) — A tuple of integers.

Two functions that are useful for tabulating results and for analyzing where the errors in a gvar.GVar constructed
from other gvar .GVars come from:

gvar.fmt_errorbudget (outputs, inputs, ndecimal=2, percent=True, colwidth=10)

Tabulate error budget for outputs ko] dueto inputs[ki].

For each output outputs ko], fmt_errorbudget computes the contributions to outputs [ko] ‘s stan-
dard deviation coming from the gvar.GVars collected in inputs [ki]. This is done for each key combi-
nation (ko, ki) and the results are tabulated with columns and rows labeled by ko and ki, respectively. If
a gvar.GVar in inputs[ki] is correlated with other gvar.GVars, the contribution from the others is
included in the ki contribution as well (since contributions from correlated gvar . GVars cannot be resolved).
The table is returned as a string.

Parameters
* outputs — Dictionary of gvar.GVars for which an error budget is computed.

* inputs — Dictionary of: gvar.GVars, arrays/dictionaries of gvar.GVars, or lists of
gvar .GVars and/or arrays/dictionaries of gvar . GVars. fmt_errorbudget tabulates
the parts of the standard deviations of each outputs [ko] due to each inputs [ki].

» ndecimal (int) — Number of decimal places displayed in table.

 percent (boolean) — Tabulate % errors if percent is True; otherwise tabulate the er-
rors themselves.

* colwidth (positive integer) — Width of each column.

Returns A table (str) containing the error budget. Output variables are labeled by the keys in
outputs (columns); sources of uncertainty are labeled by the keys in inputs (rows).

gvar . fmt_values (outputs, ndecimal=None)

Tabulate gvar.GVarsin outputs.
Parameters
* outputs — A dictionary of gvar.GVar objects.
* ndecimal (int or None) — Format values v using v. fmt (ndecimal).

Returns A table (str) containing values and standard deviations for variables in out put s, labeled
by the keys in outputs.

The following functions creates new functions that generate gvar . GVars (to replace gvar.gvar () ):

42
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gvar.switch_gvar ()
Switch gvar.gvar () tonew gvar.GVarFactory.

Returns New gvar.gvar ().

gvar.restore_gvar ()
Restore previous gvar.gvar ().

Returns Previous gvar.gvar ().

gvar.gvar_factory (cov=None)
Return new function for creating gvar .GVars (to replace gvar.gvar ()).

If cow is specified, it is used as the covariance matrix for new gvar . GVars created by the function returned
by gvar_factory (cov). Otherwise a new covariance matrix is created internally.

gvar.GVars created by different functions cannot be combined in arithmetic expressions (the error message “In-
compatible GVars.” results).

The following function can be used to rebuild collections of gvar .GVars, ignoring all correlations with other vari-
ables. It can also be used to introduce correlations between uncorrelated variables.

gvar.rebuild (g, gvar=gvar, corr=0.0)
Rebuild g stripping correlations with variables not in g.

g is either an array of gvar.GVars or a dictionary containing gvar . GVars and/or arrays of gvar .GVars.
rebuild (g) creates a new collection gvar .GVars with the same layout, means and covariance matrix as
those in g, but discarding all correlations with variables not in g.

If corr is nonzero, rebuild will introduce correlations wherever there aren’t any using
cov[i,j] —-> corr x sqgrt(cov[i,il=*cov[i,J])
wherever cov [1i, j]1==0.0 initially. Positive values for corr introduce positive correlations, negative values
anti-correlations.
Parameter gvar specifies a function for creating new gvar . GVars thatreplaces gvar . gvar () (the default).
Parameters
* g (array or dictionary) — gvar .GVars to be rebuilt.

* gvar (gvar.GVarFactory or None) — Replacement for gvar.gvar () to use in re-
building. Defaultis gvar.gvar ().

* corr (number) — Size of correlations to introduce where none exist initially.

Returns Array or dictionary (gvar.BufferDict) of gvar . GVars (same layout as g) where all corre-
lations with variables other than those in g are erased.

Finally there is a utility function and a class for implementing an svd analysis of a covariance or other symmetric,
positive matrix:

gvar.svd (g, svdcut=None, svdnum=None, compute_delta=False, rescale=True)
Apply svd cuts to collection of gvar.GVarsin g.

g is an array of gvar.GVars or a dictionary containing gvar.GVars and/or arrays of gvar.GVars.
svd (g, ...) returns a copy of g whose gvar.GVars have been modified so that their covariance matrix
is less singular than for the original g (the gvar .GVar means are unchanged). This is done using an svd al-
gorithm which is controlled by three parameters: svdcut, svdnum and rescale (see gvar . SVD for more
details). svd cuts are not applied when the covariance matrix is diagonal (that is, when there are no correlations
between different elements of g).

The input parameters are :
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Parameters

* g— Anarray of gvar.GVars or a dicitionary whose values are gvar . GVars and/or arrays
of gvar.GVars.

* svdcut (None or number (|svdcut|<=1).) — If positive, replace eigenvalues of the
covariance matrix with svdcut» (max eigenvalue); if negative, discard eigenmodes
with eigenvalues smaller than svdcut times the maximum eigenvalue. Default is None.

* svdnum (None or int) — If positive, keep only the modes with the largest svdnum eigen-
values; ignore if set to None. Default is None.

* rescale — Rescale the input matrix to make its diagonal elements equal to 1.0 before applying
svd cuts. (Default is True.)

* compute_inv — Compute representation of inverse of covariance matrix if True; the result
is stored in svd. inv_wgt (see below). Default value is False.

Returns A copy of g with the same means but with a covariance matrix modified by svd cuts.
Data from the svd analysis of g‘s covariance matrix is stored in svd itself:

svd.val
Eigenvalues of the covariance matrix after svd cuts (and after rescaling if rescale=True); the eigenval-
ues are ordered, with the smallest first.

svd.vec
Eigenvectors of the covariance matrix after svd cuts (and after rescaling if rescale=True), where
svd.vec[1] is the vector corresponding to svd.val[1i].

svd.eigen_range
Ratio of the smallest to largest eigenvalue before svd cuts are applied (but after rescaling if
rescale=True).

svd.D
Diagonal of matrix used to rescale the covariance matrix before applying svd cuts (cuts are applied to
D+covxD)if rescale=True; svd.Dis None if rescale=False.

svd.logdet
Logarithm of the determinant of the covariance matrix after svd cuts are applied.

svd.correction
Vector of the svd corrections to g. flat;

svd.inv_wgt
The sum of the outer product of vectors inv_wgt [1] with themselves equals the inverse of the covari-
ance matrix after svd cuts. Only computed if compute_inv=True. The order of the vectors is reversed
relative to svd.val and svd.vec

2.8 Classes

The fundamental class for representing Gaussian variables is:

class gvar.GvVar
The basic attributes are:

mean
Mean value.

sdev
Standard deviation.
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var
Variance.

Two methods allow one to isolate the contributions to the variance or standard deviation coming from other
gvar.GVars:

partialvar (*args)
Compute partial variance due to gvar.GVarsin args.

This method computes the part of self.var due to the gvar.GVarsin args. If args[1i] is corre-
lated with other gvar . GVars, the variance coming from these is included in the result as well. (This last
convention is necessary because variances associated with correlated gvar . GVars cannot be disentan-
gled into contributions corresponding to each variable separately.)

Parameters args[i] (gvar.GVar or array/dictionary of gvar .GVars) — Variables contribut-
ing to the partial variance.

Returns Partial variance due to all of args.

partialsdev ( *args)
Compute partial standard deviation due to gvar .GVarsin args.

This method computes the part of self.sdev due to the gvar.GVarsinargs. If args[1i] is corre-
lated with other gvar .GVars, the standard deviation coming from these is included in the result as well.
(This last convention is necessary because variances associated with correlated gvar . GVars cannot be
disentangled into contributions corresponding to each variable separately.)

Parameters args[i] (gvar.GVar or array/dictionary of gvar .GVars) — Variables contribut-
ing to the partial standard deviation.

Returns Partial standard deviation due to args.

Partial derivatives of the gvar .GVar with respect to the independent gvar . GVars from which it was con-
structed are given by:

deriv (x)
Derivative of self with respest to independent gvar .GVar x.

x must be an independent gvar .GVar, whichisagvar.GVar created by acallto gvar.gvar () (e.g.,
x = gvar.gvar (xmean, xsdev)) or a function f (x) of such a gvar.Gvar. (More precisely,
x . der must have only one nonzero entry.)

All gvar.GVars are constructed from a set of independent gvar.GVars. self.deriv (x) returns
the partial derivative of self with respect to independent gvar .GVar x, holding all of the other inde-
pendent gvar . GVars constant.

Parameters x — The independent gvar.GVar.
Returns The derivative of self with respect to x.
There are two methods for converting self into a string, for printing:

__str__ ()
Convert to string with format: mean +- std-dev.

fmt (ndecimal=None, sep="")
Convert to string with format: mean (sdev) .

Leading zeros in the standard deviation are omitted: for example, 25.67 +- 0.02 becomes
25.67(2). Parameter ndecimal specifies how many digits follow the decimal point in the mean.
Parameter sep is a string that is inserted between the mean and the (sdev). If ndecimal is None
(default), it is set automatically to the larger of int (2-10gl0 (self.sdev)) or 0; this will display
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at least two digits of error. Very large or very small numbers are written with exponential notation when
ndecimal is None.

Two attributes and a method make reference to the original variables from which self is derived:

cov
Underlying covariance matrix (type gvar . smat) shared by all gvar.GVars.

der
Array of derivatives with respect to underlying (original) gvar.GvVars.

dotder (v)
Return the dot product of self.der and v.

The following class is a specialized form of an ordered dictionary for holding gvar.GVars (or other scalars) and
arrays of gvar . GVars (or other scalars) that supports Python pickling:

class gvar .BufferDict

Dictionary whose data is packed into a 1-d buffer (numpy.array).

A gvar.BufferDict object is a dictionary-like object whose values must either be scalars or arrays (like
numpy arrays, with arbitrary shapes). The scalars and arrays are assembled into different parts of a single
one-dimensional buffer. The various scalars and arrays are retrieved using keys, as in a dictionary: e.g.,

>>> a = BufferDict (
>>> a[’scalar’] =0
>>> a[’vector’] = [
>>> a[’tensor’] = [
>>> print (a.flatten
[ o. 1. 2. 3. 4
>>> for k in a: # iterate over keys in a
print (k,alk])
scalar 0.0

) # print a’s buffer

vector [ 1. 2.]
tensor [[ 3. 4.]
[ 5. 6.]1]
>>> a[’vector’] = a[’vector’]1x10 # change the ’vector’ part of a
>>> print (a.flatten())
[ 0. 10. 20. 3. 4. 5. 6.1]

The first four lines here could have been collapsed to one statement:

a = BufferDict (scalar=0.0,vector=[1.,2.],tensor=[[3.,4.1,1[5.,6.11)

or

a = BufferDict ([ (’scalar’,0.0), ("vector’,[1.,2.]1),
("tensor’, [[3.,4.]1,([5.,6.11)1)

where in the second case the order of the keys is preserved in a (that is, Buf ferDict is an ordered dictionary).

The keys and associated shapes in a gvar .BufferDict can be transferred to a different buffer, creating a
new gvar.BufferDict: e.g., using a from above,

>>> pbuf = numpy.array([0.,10.,20.,30.,40.,50.,60.1)

>>> b = BufferDict (a,buf=buf) # clone a but with new buffer
>>> print (b[’tensor’])
[[ 30. 40.]

[ 50. 60.1]

>>> b[’scalar’] += 1
>>> print (buf)
[ 1. 10. 20. 30. 40. 50. ©60.]
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Note how b references buf and can modify it. One can also replace the buffer in the original
gvar.BufferDict using, for example, a.buf = buf:

>>> a.buf = buf
>>> print (a[’tensor’])
[[ 30. 40.]

[ 50. 60.1]

>>> a[’tensor’] = 10.
>>> print (buf)
[ 1. 10. 20. 300. 400. 500. 600.]

a.buf is the numpy array used for a‘s buffer. It can be used to access and change the buffer directly. In
a.buf = buf, the new buffer buf must be a numpy array of the correct shape. The buffer can also be
accessed through iterator a . £1at (in analogy with numpy arrays), and through a. flatten () which returns
a copy of the buffer.

A gvar.BufferDict functions like a dictionary except: a) items cannot be deleted once inserted; b) all
values must be either scalars or arrays of scalars, where the scalars can be any noniterable type that works with
numpy arrays; and ¢) any new value assigned to a key must have the same size and shape as the original value.

Note that gvar.BufferDicts can be pickled and unpickled even when they store gvar.GVars (which
themselves cannot be pickled separately).

The main attributes are:

size
Size of buffer array.

flat
Buffer array iterator.

dtype
Data type of buffer array elements.

buf
The (1d) buffer array. Allows direct access to the buffer: for example, self.buf[i] = new_val sets
the value of the i—th element in the buffer to value new_val. Setting self.buf nbuf replaces
the old buffer by new buffer nbuf. This only works if nbuf is a one-dimensional numpy array having
the same length as the old buffer, since nbuf itself is used as the new buffer (not a copy).

shape
Always equal to None. This attribute is included since gvar.BufferDicts share several attributes
with numpy arrays to simplify coding that might support either type. Being dictionaries they do not have
shapes in the sense of numpy arrays (hence the shape is None).

The main methods are:

flatten ()
Copy of buffer array.

slice (k)
Return slice/index in self. flat corresponding to key k.

isscalar (k)
Return True if self [k] is scalar else False.

update (d)
Add contents of dictionary d to self.

static load (fobj, use_json=False)
Load serialized gvar .Buf ferDict from file object fobj. Uses pickle unless use_jsonis True,
in which case it uses json (obvioulsy).
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static loads (s, use_json=False)

Load serialized gvar.BufferDict from string object s. Uses pickle unless use_json is True,
in which case it uses json (obvioulsy).

dump (fobj, use_json=False)

Serialize gvar.BufferDict in file object fob .

Uses pickle unless use_json is True, in which case it uses json (obviously). json does not
handle non-string valued keys very well. This attempts a workaround, but it will only work in simpler
cases. Serialization only works whe