Ncpol2sdpa Manual

Peter Wittek
ICFO-The Institute of Photonic Sciences and University of Boras

1 Introduction

Ncpol2sdpa is a tool to convert a polynomial optimization problem of noncom-
muting variables to a sparse semidefinite programming (SDP) problem that can
be processed by the SDPA! family of solvers Yamashita et al. (2003). The
optimization problem can be unconstrained or constrained by equalities and
inequalities.

The objective is to be able to solve very large scale optimization problems.
For example, a convergent series of lower bounds can be obtained for ground
state problems with arbitrary Hamiltonians.

The implementation has an intuitive syntax for entering Hamiltonians and
it scales for a larger number of noncommuting variables using a sparse repre-
sentation of the SDP problem. The code is available in the Python Package
Index at https://pypi.python.org/pypi/ncpol2sdpa/ and the development
version is at http://peterwittek.github.io/ncpol2sdpa/.

For further information on the internal workings of the library, please refer
to corresponding paper (Wittek, 2014).

2 Dependencies and compilation

The implementation requires SymPy?> 0.7.2 (Joyner et al., 2012) and SciPy?3
in the Python search path. The code is compatible with both Python 2 and 3,
but using version 3 incurs a major decrease in performance. Follow the standard
procedure for installing Python modules:

$ sudo pip install ncpol2sdpa
If you use the development version, install it from the source code:

$ sudo python setup.py install

'http://sdpa.sourceforge.net/
2http://sympy.org/
Shttp://scipy.org/

https://pypi.python.org/pypi/ncpol2sdpa/
http://peterwittek.github.io/ncpol2sdpa/
http://sdpa.sourceforge.net/
http://sympy.org/
http://scipy.org/

3 Usage

The implementation follows an object-oriented design. The core object is Sd-
pRelaxation. There are three steps to generate the relaxation:

1. Instantiate the SdpRelaxation object.
2. Get the relaxation.
3. Write the relaxation to a file or solve the problem.

The second step is the most time consuming, often running for hours as the
number of noncommuting variables increases.

To instantiate the SdpRelaxation object, you need to specify the noncom-
muting variables:

X = ... # Define noncommuting variables
sdpRelaxation = SdpRelaxation(X)

Getting the relaxation also follows an almost identical syntax. It requires all
the information about the polynomial optimization problem itself: the objec-
tive function, an associative array of the inequalities, equalities, the monomial
substitutions, and also the level of the relaxation:

sdpRelaxation.get_relaxation(obj, inequalities, equalities,
monomial_substitution, level)

The last step in is to write out the relaxation to a sparse SDPA file. The
method (write_to_sdpa) takes one parameter, the file name. Alternatively, if
SDPA is in the search path, then it can be solved by invoking a helper function
(solve_sdp). Alternatively, MOSEK" is also supported for writing a problem
and solving it. Using a compatibility layer to PICOS?, it is also possible to solve
the problem with a range of other solvers, including CVXOPTS.

4 Examples

4.1 Example 1: Toy example

Consider the following polynomial optimization problem (Pironio et al., 2010):
min r1x2 + Troxq
zER?

such that

—23+ 15 +0.5>0

4http://www.mosek. com/
Shttp://picos.zib.de/
Shttp://cvxopt.org/

http://www.mosek.com/
http://picos.zib.de/
http://cvxopt.org/

22— 2 =0.

Entering the objective function and the inequality constraint is easy. The
equality constraint is a simple projection. We either substitute two inequalities
to replace the equality, or treat the equality as a monomial substitution. The
second option leads to a sparser SDP relaxation. The code samples below take
this approach. In this case, the monomial basis is {1, 21, T2, 172, ¥221, 23}.
The corresponding relaxation is written as

myin Y12 + Y21

such that

1 Y1 Y2 Y12 Yo1 Y22

U1 n Y12 Y12 Y121 Y122

Y2 | Y21 Y22 Y212 Y221 Y222 -0
Y21 | Y21 Y212 | Y212 Y2121 Y2122 -

Y12 | Y121 Y122 | Y1212 Y1221 Y1222

Y22 | Y221 Y222 | Y2212 Y2221 Y2222

—Y22 +y2+ 0.5 ‘ —Y221 + Y21 + 0.5y —Y222 + Y22 + 0.5y2

— 4221 +y21 + 0.5y1 | —w1221 + Y121 + 0.5y1 —y1202 + Y122 + 0.5y12 | = 0.
—y222 + Y22 + 0.5y2 | —y1202 + Y122 + 0.5y12 —y22022 + Y222 + 0.5y22

Apart from the matrices being symmetric, notice other regular patterns between
the elements. These are taken care of as additional constraints in the implemen-
tation. The optimum for the objective function is —3/4. The implementation
reads as follows:

from ncpol2sdpa import generate_variables, SdpRelaxation, write_to_sdpa
Number of Hermitian variables
n_vars = 2

Level of relaxation
level = 2

Get Hermitian variables
X = generate_variables(n_vars, hermitian=True)

Define the objective function
obj = X[0] = X[1] + X[1] = X[O]

Inequality constraints
inequalities = [-X[1] *x 2 + X[1] + 0.5]

Equality constraints

equalities = []

Simple monomial substitutions
monomial_substitution = {}
monomial_substitution[X[0] ** 2] = X[0]

Obtain SDP relaxation

sdpRelaxation = SdpRelaxation(X)

sdpRelaxation.get_relaxation(obj, inequalities, equalities,
monomial_substitution, level)

write_to_sdpa(sdpRelaxation, ’example_noncommutative.dat-s’)

Any flavour of the SDPA family of solvers will solve the exported problem:
$ sdpa examplenc.dat-s examplenc.out

If the SDPA solver is in the search path, we can invoke the solver from
Python:

from ncpol2sdpa import solve_sdp
primal, dual = solve_sdp(sdpRelaxation)

The relevant part of the output shows the optimum for the objective func-
tion:

objValPrimal = -7.5000001721851994e-01
objValDual = -7.5000007373829902e-01

This is close to the analytical optimum of —3/4.

4.2 Example 2: Using MOSEK or PICOS

Apart from SDPA, MOSEK also enjoys full support. Using the preliminaries of
the problem outlined in Section 4.1, once we have the relaxation, we can convert
it to a MOSEK task and solve it:

task = convert_to_mosek(sdpRelaxation)
task.optimize()
task.solutionsummary(mosek.streamtype.msg)

Please ensure that the MOSEK is operational.

A compatibility layer with PICOS allows calling a wider ranger of solvers.
Assuming that the PICOS dependencies are in PYTHONPATH, we can pass an
argument to the function get_relaxation to generate a PICOS optimization
problem. Using the same example as before, we change the relevant function
call to:

P = sdpRelaxation.get_relaxation(obj, inequalities, equalities,
monomial_substitution, level, target=’picos’)

This returns a PICOS problem, and with that, we can solve it with any solver
that PICOS supports:

P.solve()

4.3 Example 3: Bosonic system

A more sophisticated application is also supplied with the code (test-harmonic_oscillator.py),
which implements the Hamiltonian of a bosonic system on a 1D line. Since it
uses non-Hermitian variables, a C+4 implementation is currently not feasible.
The system Hamiltonian describes N harmonic oscillators with a parameter
w. It is the result of second quantization and it is subject to bosonic constraints
on the ladder operators a; and az (see, for instance, Section 22.2 in Fayngold
and Fayngold (2013)). The Hamiltonian is written as

H:hwzi:(alai—i—;). (1)

Here ' stands for the adjoint operation. The constraints on the ladder operators
are given as

la;, al] = 6 (2)
[as, aj] =0
[a;‘ra a;] =0,

where [.,.] stands for the commutation operator [a,b] = ab — ba.

Clearly, most of the constraints are monomial substitutions, except [a;, a}] =
1, which needs to be defined as an equality. The Python code for generating
the SDP relaxation is provided below. We set w = 1, and we also set Planck’s
constant & to one, to obtain numerical results that are easier to interpret.

from sympy.physics.quantum.dagger import Dagger

from ncpol2sdpa import generate_variables, \
bosonic_constraints, \
SdpRelaxation, write_to_sdp

level of relaxation
level = 1

Number of variables
N =4

Parameters for the Hamiltonian
hbar, omega = 1, 1

Define ladder operators

a = generate_variables(N, name=’a’)

hamiltonian = 0
for i in range(N):
hamiltonian += hbar*omega*(Dagger(a[i])*a[i]+0.5)

monomial_substitutions, equalities = bosonic_constraints(a)
inequalities = []

time0 = time.time()

print ("Obtaining SDP relaxation...")

verbose = 1

sdpRelaxation = SdpRelaxation(a)

sdpRelaxation.get_relaxation(hamiltonian, inequalities, equalities,
monomial_substitutions, level,
removeequalities=True)

write_to_sdpa(sdpRelaxation, ’harmonic_oscillator.dat-s’)

Solving the SDP for N = 4, for instance, gives the following result:

objValPrimal = +1.9999998358414430e+00
objValDual +1.9999993671869802e+00

This is very close to the analytic result of 2. The result is similarly precise for
arbitrary numbers of oscillators.

It is remarkable that we get the correct value at the first level of relaxation,
but this property is typical for bosonic systems (Navascués et al., 2013).

4.4 Example 4: Using the Nieto-Silleras hierarchy

One of the newer approaches to the SDP relaxations takes all joint probabilities
into consideration when looking for a maximum guessing probability, and not
just the ones included in a particular Bell inequality (Nieto-Silleras et al., 2014;
Bancal et al., 2014). Ncpol2sdpa can generate the respective hierarchy.

To deal with the joint probabilities necessary for setting constraints, we also
rely on QuTiP (Johansson et al., 2013):

from math import sqrt

from qutip import tensor, basis, sigmax, sigmay, expect, geye

from ncpol2sdpa import SdpRelaxation, flatten, solve_sdp, \
generate_measurements, \
projective_measurement_constraints

We will work in a CHSH scenario where we are trying to find the maximum
guessing probability of the first projector of Alice’s first measurement. We
generate the joint probability distribution on the maximally entangled state
with the measurements that give the maximum quantum violation of the CHSH
inequality:

def joint_probabilities():

psi = (tensor(basis(2,0),basis(2,0)) +
tensor(basis(2,1) ,basis(2,1))) .unit()

A_0 = sigmax()

A_1 = sigmay()

B_0 = (-sigmay()+sigmax())/sqrt(2)

B_1 = (sigmay()+sigmax())/sqrt(2)

A_00 = (qgeye(2) + A_0)/2

A_10 = (qeye(2) + A_1)/2

B_00 = (qeye(2) + B_0)/2

B_10 = (qeye(2) + B_1)/2

p

p-append (expect (tensor (A_00, qeye(2)), psi))
p-append (expect (tensor (A_10, geye(2)), psi))
p-append (expect (tensor (qeye(2), B_00), psi))
p-append (expect (tensor (qeye(2), B_10), psi))

.append (expect (tensor (A_00, B_00), psi))
.append (expect (tensor (A_00, B_10), psi))
.append (expect (tensor (A_10, B_00), psi))
.append (expect (tensor (A_10, B_10), psi))
return p

‘o ‘o ‘o o

Next we need the basic configuration of the projectors. We also set the level of
the SDP relaxation and the objective.

level = 1
A_configuration = [2, 2]
B_configuration = [2, 2]

P_A = generate_measurements(A_configuration, ’P_A’)

P_B = generate_measurements(B_configuration, ’P_B’)

monomial_substitutions = projective_measurement_constraints(
P_A, P_B)

objective = -P_A[0] [0]

We must define further constraints, namely that the joint probabilities must
match:

probabilities = joint_probabilities()

equalities = []

k=0

for i in range(len(A_configuration)):
equalities.append(P_A[i] [0] - probabilities[k])
k+=1

for i in range(len(B_configuration)):

equalities.append(P_B[i] [0] - probabilitiesl[k])
k +=1
for i in range(len(A_configuration)):
for j in range(len(B_configuration)):
equalities.append(P_A[i] [0]*P_B[j] [0] - probabilities[k])
k+=1

From here, the solution follows the usual pathway, indicating that we are re-
questing the Nieto-Silleras hierarchy:

sdpRelaxation = SdpRelaxation([flatten([P_A, P_B])], verbose=2,
hierarchy="nieto-silleras")
sdpRelaxation.get_relaxation(objective, [], equalities,
monomial_substitutions, level)

print (solve_sdp(sdpRelaxation))

4.5 Example 5: Using the Moroder hierarchy

This type of hierarchy allows for a wider range of constraints of the optimization
problems, including ones that are not of polynomial form (Moroder et al., 2013).
These constraints are hard to impose using SymPy and the sparse structures in
Ncpol2Sdpa. For this reason, we separate two steps: generating the SDP and
post-processing the SDP to impose extra constraints. This second step can be
done in MATLARB, for instance. We need to import a slightly different set of
functions:

from ncpol2sdpa import SdpRelaxation, flatten, write_to_sdpa, \
generate_measurements, \
projective_measurement_constraints, \
define_objective_with_I

Then we set up the problem with specifically with the CHSH inequality in the
probability picture as the objective function:

level =1
A_configuration = [2, 2]
B_configuration [2, 2]
I=1[[o0, -1, 01,
[-1, 1, 11,
Lo, 1, -11]
A = generate_measurements(A_configuration, ’A’)

B = generate_measurements(B_configuration, ’B’)
monomial_substitutions = projective_measurement_constraints(A, B)
objective = define_objective_with_I(I, A, B)

When obtaining the relaxation for this kind of problem, it can prove useful to
disable the normalization of the top-left element of the moment matrix. Natu-
rally, before solving the problem this should be set to zero, but further processing

of the SDP matrix can be easier without this constraint set a priori. Hence we
write:

sdpRelaxation = SdpRelaxation([flatten(A), flatten(B)], verbose=2,
hierarchy="moroder", normalized=False)
sdpRelaxation.get_relaxation(objective, [1, [],
monomial_substitutions, level)
write_to_sdpa(sdpRelaxation, "chsh-moroder.dat-s")

For instance, reading this file with SeDuMi’s fromsdpa function (Sturm, 1999),
we can impose the positivity of the partial trace of the moment matrix, or
decompose the moment matrix in various forms.

References

Bancal, J.-D., Sheridan, L. and Scarani, V. (2014). More randomness from the
same data. New Journal of Physics, 16(3):033011.

Fayngold, M. and Fayngold, V. (2013). Quantum Mechanics and Quantum
Information. Wiley-VCH.

Johansson, J., Nation, P. and Nori, F. (2013). A Python framework for the
dynamics of open quantum systems. Computer Physics Communications,

184(4):1234-1240

Joyner, D., Certik, O., Meurer, A., and Granger, B. E. (2012). Open source
computer algebra systems: SymPy. ACM Communications in Computer Al-
gebra, 45(3/4):225-234.

Moroder, T., Bancal, J.-D., Liang, Y.-C., Hofmann, M. and Ghne, O. (2013).
Device-independent entanglement quantification and related applications
Physics Review Letters, 111(3):030501.

Navascués, M., Garcia-Séez, A., Acin, A., Pironio, S., and Plenio, M. B. (2013).
A paradox in bosonic energy computations via semidefinite programming re-
laxations. New Journal of Physics, 15(2):023026.

Nieto-Silleras, O., Pironio, S. and Silman, J. (2014) Using complete measure-
ment statistics for optimal device-independent randomness evaluation. New
Journal of Physics, 16(1):013035.

Pironio, S., Navascues, M., and Acin, A. (2010). Convergent relaxations of poly-
nomial optimization problems with noncommuting variables. SIAM Journal
on Optimization, 20(5):2157-2180.

Sturm, J. (2010). Using SeDuMi 1.02, a MATLAB Toolbox for Optimization
Over Symmetric Cones. Optimization Methods and Software, 11(1-4):625-653.

Wittek, P. (2014). Ncpol2sdpa — Sparse Semidefinite Programming Relaxations
for Polynomial Optimization Problems of Noncommuting Variables. To ap-
pear in the ACM Transactions on Mathematical Software.

Yamashita, M., Fujisawa, K., and Kojima, M. (2003). SDPARA: Semidefinite
programming algorithm parallel version. Parallel Computing, 29(8):1053—
1067.

10

	Introduction
	Dependencies and compilation
	Usage
	Examples
	Example 1: Toy example
	Example 2: Using MOSEK or PICOS
	Example 3: Bosonic system
	Example 4: Using the Nieto-Silleras hierarchy
	Example 5: Using the Moroder hierarchy

